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We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba
spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid
order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We
perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the
first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to
characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the
intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an
expanding variety of quantum Hall and topological superconductor systems.
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Exotic states of matter, including high-Tc superconduc-
tivity and topological phases, have long been a focus of
condensed matter physics. However, many of these behav-
iors are challenging to detect and characterize in real
materials, where fixed structural and electromagnetic prop-
erties typically provide limited access to the parameter
space. Modern cooling and trapping techniques in ultracold
atoms, combined with optical lattice potentials [1,2] and
artificial gauge fields [3–8], have opened a new window
onto these novel phases, which can be explored across
broad parameter regimes well beyond those available to
experiments with real materials.
Ultracold atoms in optical lattices thus provide access to

clean, tunable systems in which to study the combination
of strong interactions and spin-orbit coupling (SOC) with
extreme precision. These systems display a number of
exotic phases. A thorough understanding, and high-
accuracy characterization, of these phases will have impor-
tant implications across the fields of spintronics and
quantum computation and information [9–11], among
others.
The importance of high-accuracy numerical benchmarks

has grown considerably with the recent advent of Fermi
gas microscopes, capable of performing site-resolved
measurements of lattice fermions [12–16]. This expansive
experimental horizon, and the promise of high-accuracy
measurements of these disorder-free and finely tunable
systems, has opened a new avenue to explore many open
questions [17–21]. Complementary experimental and theo-
retical efforts will help shed light on the novel physics
realized in these systems, which combine strong interac-
tion, exotic pairing, and superconductivity, as well as
topological effects.
Despite this rapidly growing interest, the ground-state

properties of lattice fermions with attractive interactions
and SOC, a candidate system for the realization of many

novel phases, remain largely uncharacterized. Calculations
based on the mean-field theory [20,22,23] have indicated a
variety of interesting phases. However, these approaches
can be sensitive to the decomposition used and the
corresponding symmetry-breaking terms. To reliably deter-
mine the ground state of a strongly interacting system with
coexisting orders requires a highly accurate many-body
approach. Many-fermion systems are notoriously challeng-
ing to treat theoretically or computationally. Applying
several advances in auxiliary-field quantum Monte Carlo
(AFQMC) simulations [24–26], including accelerated sam-
pling [27] with force bias [28], control of Monte Carlo
variance [29], and treatment of SOC [30], we show that
systematic and high-precision numerical data can be
obtained on the ground-state properties of this remarkable
system [31]. The spin-balanced situation, when no Zeeman
field is present, preserves time-reversal symmetry such that
the calculations can be made free of the fermion sign
problem [30,35], and the results here are unbiased and
numerically exact. This work thus serves as an illustration
of the power of state-of-the-art computational approaches
for exotic, strongly correlated quantum systems, in a
system which is on the verge of experimental realization.
Our results allow a quantitative description of attractive

fermions with Rashba SOC in a two-dimensional (2D)
optical lattice, which displays a supersolid phase [36–40]
with both singlet and triplet pairing and topological
signatures. We elucidate the unique pairing properties of
the system and their connections to the spin and momentum
distributions. The interplay between pairing and the charge
order at half filling is characterized. Moreover, we examine
the edge currents to explore the emergence of topological
behavior, in the context of Majorana edge modes which are
of strong current interest.
The Hamiltonian for ultracold fermions in a 2D optical

lattice with Rashba SOC is written
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with εk¼−2tðcoskxþcoskyÞ and Lk¼2λðsinky−isinkxÞ.
The parameter t, set to unity throughout this work, deter-
mines the strength of nearest-neighbor hopping, the param-
eter λ controls the strength of the SOC, and the parameter
U (< 0) determines the strength of the on-site attractive
interaction, with niσ ¼ c†iσciσ denoting the density operator
in real space on site i with spin σð¼ ↑ or ↓Þ. We will focus
mostly on half filling in this work, with a total number of
atoms equal to the number of lattice sites.
Although the existence and stability of a supersolid

(superconducting charge-density-wave) state in the attrac-
tive Hubbard model has been well understood [39,40], the
properties of this phase in the presence of Rashba SOC
remain largely uncharacterized. Here we provide a precise
characterization of this phase and study its properties and
their interplay with SOC strength. We examine the charge
order by measuring the density-density correlation function
Dði; jÞ ¼ hninji, with ni ¼ ðni↑ þ ni↓Þ. (Expectation val-
ues denoted by angle brackets are always taken with respect
to the many-body ground state in this work.) Several
quantities are measured to probe superfluidity, including
the s-wave pair-pair correlation P1sði; jÞ ¼ hΔ†

iΔji, where
Δ†

i ¼ c†i↑c
†
i↓ creates a singlet pair at lattice site i. In periodic

supercells, we average over the reference site j and will
label it as “0” for convenience.
A characteristic example of the supersolid state is shown

in Fig. 1. Plotted in the upper left corner is the density-
density correlation function, which provides an illustration
of the charge-density wave (CDW). A clear checkerboard
pattern is seen, with a persistent alternating order. Sites that
belong to the same sublattice as the reference have above-
average occupation, while those on the other sublattice
have below-average occupation. The amplitude of the
CDW is essentially constant across the lattice. We have
verified with calculations on larger supercell sizes that the
long-range values of the CDW is independent of size,
providing strong evidence of long-range order. Plotted
below the density-density correlation is the pair-pair
correlation function. In this case, the presence of long-
range superfluid order is evident from the significant
magnitude of the pair-pair correlation across the lattice.
The effects of increasing SOC strength on these corre-

lations are illustrated in the right column in Fig. 1, which
shows slices of the density-density correlation in the top
panel and the pair-pair correlation in the bottom panel. The
correlations evolve in equal proportion to each other with
increasing SOC, which is a reflection of the underlying
particle-hole symmetry. For small values of λ, the super-
solid state is robust, with charge and superfluid orders of
sizable magnitude. As SOC increases, these orders are

diminished. However, even at strong SOC, such as λ ¼ 2.0,
both remain finite.
The nature of pairing is altered in a fundamental way by

the presence of SOC. The singlet and triplet channels are
mixed, resulting in a pair wave function with both singlet
and triplet components, Ψp ¼ ψ s

p þ ψ t
p. We investigate

pairing via the construction and diagonalization of the
two-body density matrix in momentum space:

ρ2ðk; χ;q; χ0Þ ¼ hΔ†
χðkÞΔχ0 ðqÞi; ð2Þ

with χ ¼ s or t↑ or t↓. The singlet and triplet pairing
operators are

Δ†
s ¼ 1ffiffiffi

2
p ðc†k↑c†−k↓ − c†k↓c

†
−k↑Þ;

Δ†
t↑ ¼ c†k↑c

†
−k↑;

Δ†
t↓ ¼ c†k↓c

†
−k↓; ð3Þ

while the third component of the triplet pairing vanishes by
symmetry. The leading eigenvalue, Nc, of the 3N × 3N
matrix ρ2 gives the condensate fraction of the pairs [41]:
nc ≡ Nc=N. The corresponding eigenstate gives the pair
wave function.
The structures of the pair wave functions, ψ s

pðkÞ and
ψ t
pðkÞ, are illustrated in Fig. 2. To better understand

their physical origin, we also compute the momentum
distributions, which are shown in the left panel. At each
k, the total occupancy is given by hnki¼hc†k↑ck↑þc†k↓ck↓i.

FIG. 1. Density-density (upper panel) and pair-pair (lower
panel) correlation functions. The left column is for one SOC
strength λ ¼ 0.25, while the right column shows the evolution
versus λ. The density plots on the left show the correlations for i
running through the entire periodic supercell (14 × 14). The
upper right panel shows Dði; 0Þ for a slice of sites i along
iy ¼ −3, while the lower right panel shows P1sði; 0Þ for a slice
along the diagonal, ix ¼ iy.
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The expectations of the spin components are hSxki ¼
hc†k↑ck↓ þ c†k↓ck↑i=2 and hSyki ¼ hc†k↑ck↓ − c†k↓ck↑i=2i,
with hSzki ¼ 0 by symmetry here. Thus, the magnitude
and orientation of hSki can be determined. In addition,
the noninteracting Fermi surfaces are shown in the figure
for reference, which are easily obtained from the two
helicity branches of the dispersion relations, ε�k ¼
−2tðcos kx þ cos kyÞ � 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2kx þ sin2ky

q
.

The pair wave functions illustrate that triplet pairing
occurs across the entirety of both Fermi surfaces (one for
each helicity band). Singlet pairing also occurs across both
Fermi surfaces, but with SOC it becomes strongly peaked
near the four band-touching points, which occur at the half
filling Fermi level at k ¼ ð�π; 0Þ; ð0;�πÞ. As indicated by
the spin and momentum distributions, these points have no
excess spin but are not fully occupied. They are also the
only points in momentum space that are surrounded by
almost antiparallel spins. The excitation of these neighbor-
ing antiparallel spins into the momentum states at the
band-touching points dramatically promotes singlet pairing
across the Fermi surface at these points.
Figure 3 plots, as a function of the SOC strength, the

behavior of the pair wave functions in real space, which are
given by the Fourier transforms of ψ s

pðkÞ and ψ t
pðkÞ. For

small values of SOC, the singlet pair wave function (right
column) closely resembles the pair wave function in the
absence of SOC, with a large well-localized peak indicating
strong on-site pairs. However, at increasing values of the
SOC strength, the amplitude of the central peak is reduced
and the pair wave function becomes less strongly localized.
At large λ, this delocalization is evident from the develop-
ment of additional peaks in the singlet pair wave function
away from the origin.
The triplet pair wave function at small values of SOC

shows several peaks along both diagonals, with the

strongest amplitudes located at the second-nearest-
neighbor sites to the origin. As the SOC strength increases,
the amplitude of the pair wave function grows at the third-
nearest-neighbor sites, finally displaying an intriguing
diamond pattern of peaks at the second- and third-
nearest-neighbor sites for large SOC strengths. This

FIG. 2. Spin distribution and momentum-space pair wave functions. In (a), the arrow length and direction give the magnitude and
orientation of the spin expectation, respectively, at each lattice momentum, and the dot size is proportional to the total occupation. The
amplitude of the triplet and singlet parts of the pairing wave function are plotted in (b) and (c), respectively, with the noninteracting
Fermi surfaces indicated by the dashed curves. The system is a 20 × 20 periodic supercell.

FIG. 3. Triplet (left) and singlet (right) pair wave functions in
real space. From top to bottom, λ ¼ 0.25, 1.0, 1.5. The interaction
strength is U=t ¼ −4, and the system is a 14 × 14 periodic
supercell.
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structure is a consequence of the spin-flipping process
introduced by the presence of SOC, which implies that, for
a given spin at the origin, a parallel spin can be found two
nearest-neighbor sites away as a result of successive hops
accompanied by spin flips.
The potential realization of nontrivial topological and

pairing states, with exotic spin transport properties, makes
this system particularly compelling. Given that the presence
of persistent, topologically protected edge modes is an
important first step towards reliable spintronic devices and
quantum computation, a high-accuracy numerical treat-
ment of these behaviors is essential. We examine the
existence and behavior of edge currents in the system with
open boundary conditions. We have verified by comparing
multiple calculations with periodic and open boundary
conditions that the other properties discussed so far remain
consistent. In a system with open boundaries, we compute
the spin current operator

jnm;σ ¼ −itðc†mσcnσ − c†nσcmσÞ; ð4Þ
which provides a measure of the current for spin-σ particles
between sites n and m. The top row in Fig. 4 plots jnm;↑

for λ ¼ 2.0 and clearly establishes the presence of a spin
current along the boundaries of the system. The strength of
this edge current increases monotonically with increasing
SOC. The current for spin ↓ is of equal magnitude and
opposite direction, as required by time-reversal symmetry,
such that the net current vanishes in this system.
While the present study is focused on the spin-balanced

system at half filling, it has been suggested [11,42,43] that,
with the introduction of a time-reversal-symmetry-breaking
Zeeman field and appropriate parameters, this system may
host Majorana fermions. Mean-field calculations at half

filling indicate that the presence of a Zeeman field, even of
considerable magnitude, is not sufficient to create spin-↑
and spin-↓ currents of different magnitude, and the system
remains in a state with Chern number 0,�2 [43]. For doped
systems, mean-field studies suggest that the spin-↑ and
spin-↓ currents can have different magnitudes, and the
system can enter topologically protected phases with Chern
number 0, �1. Consequently, the most promising param-
eter regimes to observe nontrivial topological behaviors lie
away from half filling.
We investigate the effect of doping on the edge currents in

the bottom panel in Fig. 4. At half filling, the current has a
consistent direction along the edge,with a peak at the corners
(where two edges meet). At intermediate doping, the current
changes direction along the edge, and a small closed loop of
current forms at each corner of the system. With further
doping, themagnitude of the current along the edge and away
from the corners is significantly reduced; however, the small
loops of current at the corners of the system remain. Near
quarter filling, the current regains a consistent direction,
opposite to that at half filling and without the current loops
observed at intermediate doping. This behavior is closely
connected to the net helicity of the system, which is
determined by the occupation of the helicity bands, ε�k .
Away from half filling, the occupation of εþk is reduced,
resulting in a reduction of the net helicity and consequently a
reduction of the edge current. At larger doping, occupation is
limited to ε−k and the net helicity of the system changes sign,
indicated by the change of direction of the current at large
doping. The structures in the current are boundary effects of
the closed systems. We have verified that in semiperiodic
systems the current is essentially constant along the edge
but shows the same trend in the dependence of themagnitude
and sign on doping.
These observations leave open the intriguing question

of how the supersolid state we have characterized evolves
as a function of spin imbalance and doping. For spin-
imbalanced lattice fermions without SOC, the system
supports finite-momentum pairing states, which is seen
directly in Hartree-Fock-Bogoliubov-type calculations [44]
and can be inferred, via particle-hole symmetry, from
more rigorous many-body results on the doped repulsive
Hubbard model, which is predicted by AFQMC and other
calculations [45,46] to support spin-density waves. Exactly
how these Fulde-Ferrell-Larkin-Ovchinnikov-type pairing
states compete or coexist with possible Majorana modes in
the presence of SOC is a question deserving of careful
further numerical investigation. Because of broken time-
reversal symmetry, the sign problem will reemerge but can
be systematically controlled using the constrained-path
AFQMC technique [47].
In summary, we have presented the first numerically

exact precision many-body study of a system directly
realizable by ultracold atom experiments in an optical
lattice with an artificial gauge field. The system exhibits

FIG. 4. Edge current in the open system. The top panel shows
the edge current at half filling for spin ↑, with the direction and
magnitude of the current indicated by the arrow direction and its
color. The bottom panel illustrates the evolution of the current
with doping, plotting the current in the y direction versus y
at x ¼ 1.
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exotic properties, with a supersolid phase containing both
singlet and triplet pairing, and topological signatures in the
form of edge currents from SOC. Using state-of-the-art
quantumMonte Carlo simulations, we have provided a full,
unbiased treatment of the many-body Schrödinger equation
to reliably characterize the effects of strong interactions and
their interplay with the band structure and SOC in the
ground state. We calculated edge currents, which provide a
fingerprint for the presence of topological behavior and are
a possible precursor of Majorana edge modes when the
parameter space of this system is further tuned and scanned.
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