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We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons
in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where
the field vanishes are tangles, i.e., Nc knotted or unknotted, linked or unlinked closed lines andM unclosed
lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by
embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an
unclosed, infinite vortex line with topological chargeM0 (Nc,M, andM0 are integers). With such structure
propagation, the “hula-hoop” solitons form; their stability is confirmed numerically. For the solitons found,
all vortex lines have unit topological charge: the number of closed lines Nc ¼ 1 and 2 (unknots, trefoils,
and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their numberM ¼ 1, 2, and 3.
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Vortices and knots, widely known in everyday life, have
now become objects of deep research in topology [1] with
important applications to hydrodynamics, physics, chem-
istry, biology, etc., from elementary particles to Early
Universe cosmology [2–7]. In classical fields knots corre-
spond to closed vortex lines, where the field vanishes,
without intersections not equivalent topologically to a
circle. In linear homogeneous media, a wave’s diffraction
and dispersion diffuse field structures and decrease their
contrast; eventually, vortices and knots [8] are practically
indistinguishable after a certain evolution period.
Solitons—stable nonlinearly localized structures of fields
of a different nature—are not common in our day-to-day
life, and they were discovered comparatively recently.
However, now solitons are considered as one of the most
important nonlinear phenomena in a wide variety of
academic and applied sciences [9]. The combination of
these two lines of investigation—(i) topologic structures
like vortices and knots and (ii) solitons—with the formation
of topological, e.g., knotted solitons, was pioneered by
Faddeev [10,11]. It is a complicated and challenging
problem, and the topological solitons’ study is proceeding
vigorously only recently [12]. Knotted solitons were
predicted for homogeneous multicomponent systems that
serve as models of Bose-Einstein condensates, plasmas,
liquid crystals, and superconductivity [13–17]. Vortex
solitons with axially symmetric intensity distribution (with-
out knotting) were found numerically in the framework of
the complex cubic-quintic Ginzburg-Landau equation
[18,19]; however, the parameters used in these simulations
are far from those in real optical schemes. Stable localized
vortices, including knotted ones, are possible in media with
periodic [20–22] or local [23–26] inhomogeneities. In the

latter case, the structures can be referred to as nonlinear
defect modes, contrary to solitons.
Although there are impressive experiments with

mechanical creation of knots in fluids [27], topological
structures’ research is readier in optics using modern lasers
and optical materials. Isolated optical vortex loops were
generated in free space with laser beams controlled by
holograms [28] and with laser beam pulses in nonlinear
media under conditions of collapse [29]. Closed vortex
lines were found at the periphery of 2D-conservative
solitons in a medium with saturable nonlinearity of the
refractive index [30]. Recently, we have predicted asym-
metric rotating and precessing 3D-topological dissipative
optical solitons in homogeneous one-component media
with saturable amplification and absorption [31]. A
thorough review of the current state in the field is given
in Ref. [32]; see also a recent experiment [33]. Important is
that an additional, compared to the case of conservative
solitons, factor of energy inflow and outflow balance leads
to much higher stability of dissipative solitons as attractors.
The goal of this Letter is to present a new wide family of

topological solitons in a homogeneous one-component
large size laser medium with saturable amplification and
absorption. These tangle structures include a number of
unclosed (infinite) and closed vortex lines. The scheme is
similar to that studied in Ref. [31], but the structures differ
radically: only one unclosed vortex line, without any closed
ones, was present in Ref. [31], and initial field structures
form now by embedding in 3D space of various 2D-laser
vortex structures found earlier [34–38].
The scheme is described by the scalar (the case of

radiation linear polarization) parabolic (dimensionless)
equation for the slowly varying field envelope E [31]:
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Evolution variable is the Cartesian coordinate along
the direction of radiation predominant propagation z.
Diffraction is reflected by the transverse Laplacian ∇2⊥ ¼
∂2=∂x2 þ ∂2=∂y2 with transverse Cartesian coordinates x
and y; τ ¼ t − z=vg is the time in the copropagating system
of coordinates moving along the z axis with the group
velocity vg. Positive and small “diffusion coefficients”
describe frequency dispersion of medium gain or loss
(d∥) and angular selectivity of amplification or absorption
(d⊥). The nonlinear function fnlðIÞ of radiation intensity
I ¼ jEj2 reflects the balance of laser gain and losses for
two-level schemes of fast active (laser gain) and passive
(saturable absorption) centers doped in the medium with
exact frequency tuning [39]:

fnlðjEj2Þ ¼ −1þ g0
1þ jEj2=β −

a0
1þ jEj2 : ð2Þ

Here, g0 and a0 are small-signal gain and absorption
coefficients, respectively; intensity I is taken in units of
the absorption saturation intensity; β denotes the ratio of
saturation intensities for gain and absorption, and the term
−1 corresponds to nonresonant linear absorption, using
normalization of the longitudinal coordinate z. Because
of fast, exponential field decay at periphery, jxj þ jyjþ
jτj → ∞, of bright localized structures considered here, the
choice of boundary conditions to Eq. (1) is not critical;
the results are the same for zero-derivative and periodic
boundary conditions.
Let us describe the choice of the field initial distribution

in the case of equal diffusion coefficients d⊥ ¼ d∥ ¼ d,
when Eq. (1) has spherical symmetry in the space
r ¼ ðx; y; τÞ. We use structures E2ðx; y; z ¼ 0Þ as a 2D-
laser soliton or a “solidlike” solitons’ complex. The
complex can have an N-fold axis of symmetry [34–38]
and include a number of vortices—points with vanishing
field E ¼ 0, around which the phase varies by 2πmi
with integer mi, topological charge. The total topological
charge of 2D structure m2D ¼ P

imi. We set such distri-
bution in the cross section y ¼ 0 of 3D-initial distribution
as E3ðx; y ¼ 0; τ; z ¼ 0Þ ¼ E2ðx − xc; τ − yc; z ¼ 0Þ with
constant ðxc; ycÞ. Next, we rotate this structure around axis
τ by polar angle φ by 2π; the trace of the structure center
forms a circle. Simultaneously we twist the structure
around its center in the poloidal plane; twist angle θc ¼
φs=N with integer s andN. Then we introduce, for the field
E3, a phase multiplier exp ðiM0φÞ with an integer M0.
In result, we obtain a continuous toroidal initial field
distribution with one or a number of infinite, unclosed
vortex lines characterized by the total topological charge
M ¼ M0 þm2Ds=N, and one or a number of closed vortex
lines, including knots. Hence, for 3D structures we get two

new, as compared with the generating 2D structures,
topological indices: charge M and fractional twist index
s=N. Such preparation of initial conditions differs from that
in Refs. [40,41] by the introduction of an unclosed vortex
line with charge M0; additionally, our generating 2D
structure is a single 2D-dissipative soliton or their complex.
In the simulations, we fix values a0 ¼ 2 and β ¼ 10
varying laser gain g0, diffusion coefficients d∥ and d⊥,
and using various 2D solitons for construction of 3D-initial
distributions. The 3D-structure stability is checked numeri-
cally, as well as in Ref. [7]; see the Supplemental Material
[42], Sec. 2, where we present also the 3D-solitons’
characterization, Sec. 1, their dynamics, Figs. S3–S10,
S12, and energy flows, Figs. S13–S15.
The first generating 2D structure is an axially symmetric

fundamental soliton (N ¼ ∞, m ¼ 0) at the distance from
the axis τ equal to one-half of the intersoliton distance in
the pair of weakly coupled antiphase laser solitons [34,35].
After its rotation in 3D space and forM ¼ 1, we get a torus
whose axis is an infinite vortex line coinciding with the axis
τ. This axially symmetric structure is metastable and
transforms, with our parameters, for large z to an asym-
metric and precessing 3D soliton with a single unclosed
(infinite) curved vortex line with topological charge 1 [31].
This “precesson” is stable in the parameters’ domain I
indicated in Fig. 2.
For the next structure we use a single axially symmetric

vortex soliton (N ¼ ∞, m ¼ 1, 3D structures with other m
decay [42], Fig. S3) with distance from the axis τ one-half
of the distance between two weakly coupled antiphase
vortex solitons with opposite charges [34,35]. The twist is
absent, s ¼ 0, and index M ¼ 1. The resulting “simple
topologically charged torus,” or “apple” has a rigid, solid-
like axially symmetric intensity distribution without defor-
mations during propagation. There are now one unclosed
(infinite straight line) and one closed (ring) vortex lines
with topological charge 1; see Figs. 1(a) and 1(b). The
soliton is stable in the domain II in Fig. 2. A mirror image
of the soliton (replacement x → −x) is a similar soliton
with inversion of the directions of phase rotation and
energy flows.
Near the stability domain’s boundaries, with increase

of gain g0, the apple vortex lines deform, as shown in
Figs. 2(a), 2(b), 2(c), and Ref. [42], Fig. S4. The vortex loop
and the intensity distribution in Fig. 2(a) have a sixfold
symmetry axis. The intensity distribution is solidlike and
turns with constant angular velocity. At the upper boundary
of the stability domain, asymmetric structures arise like (a),
(b) in Fig. 2; some of them have solidlike intensity
distribution. For larger d, solitons can decay: The symmetric
apple decays with scenario (c): the unclosed vortex line
curves, the structure oscillates and elongates progressively
in the τ direction [42], Fig. S5. An asymmetric apple decays
with the scenario shown in Ref. [42], Fig. S6, to a final
chaoticlike structure. Increase of gain induces disappearance

PRL 119, 263901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 DECEMBER 2017

263901-2



of solitons via propagation of the lasing mode front over the
whole space. Slow variations of parameters induce trans-
formations of the solitons’ type and hysteretic phenomena.
The next four structures are generated by a 2D pair of

strongly coupled solitons with equal topological charges
m1 ¼ m2 ¼ 1 (N ¼ 2) [34,35] and M0 ¼ 3 (complexes
with other M0 decay for used s). Then tracks from the 2D-
vortices’ rotation are two strongly coupled closed 3D-
vortex lines. Without twist (s ¼ 0), an axially symmetric
torus is metastable, and, after propagation over z ∼ 104, a
double-ring soliton forms with an infinite unclosed and two
closed strongly coupled vortex lines periodically passing
one through the other [Figs. 1(e), 1(f), and Ref. [42],
Fig. S7]. The structure moves along the axis τ with small
variations of its shape and velocity. It is stable in the
domain shown in Fig. 2(d). Its stability domain is more
narrow than domain V in Fig. 2(d). With twist s=N ¼
−1=2, we get an unknotted soliton [Figs. 1(g), 1(h),
and Ref. [42], Fig. S8] with a single closed vortex
line turning twice around the infinite, unclosed vortex
lines. The intensity distribution moves and rotates with
weakly oscillating velocity. Unknotted solitons are stable in
domain IV in Fig. 2. Next, with s=N ¼ −3=2, a trefoil
soliton forms that includes a single-closed trefoil vortex
line turning two times round axis τ; the corresponding
pair of the coupled line’s branches is twisted 3 times,
Figs. 1(i), 1(j), and Ref. [42], Fig. S9. The total charge of
the unclosed vortex lines M ¼ 3, they present three
unlinked lines with topological charge 1 [42], Fig. S11.

The soliton is chiral, its mirror image obtained by replace-
ment x → −x cannot be transformed to the initial one by
rotation. Trefoil solitons are stable in domain III of Fig. 2.
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FIG. 2. Overlapping stability domains in the plane of param-
eters (g0, d) for precessons (I, no closed vortex lines), axially
symmetric apples (II, single closed vortex line), trefoils (III,
knotted vortex line), unknots (IV, closed vortex line is unknotted),
and Solomon’s knots with two doubly linked unknots (V);
double-ring solitons, inset (d), exist in the domain more narrow
than V. Near the upper boundary of domain II (apples), the vortex
lines lose their symmetry as shown in the insets (a) (the closed
line has a sixfold symmetry axis), (b) (deformation of the closed
line includes 5th and 6th angular harmonics), and (c) (waved
unclosed vortex line).
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FIG. 1. “Hula-hoop” solitons: Isointensity surfaces at propagation distance z ¼ const (a),(c),(e),(g),(i), intensity I=Imax ¼ 0.05, the
surfaces illustrate the soliton localization. (b),(d),(f),(h),(j), I=Imax ¼ 0.15, and the corresponding skeletons indicate vortex lines; all
skeletons include unclosed (infinite) vortex lines. Vertical (color) scale shows the field phase. (a),(b) A simple topologically charged
torus, or an apple with solidlike axially symmetric intensity distribution not varying during its propagation with constant velocity.
Generating 2D structure is a single vortex soliton with charge m ¼ 1. Topological charge for the unclosed vortex line M ¼ 1,
topological twist index s=N ¼ 0. The skeleton (b) includes a single axially symmetric closed vortex line (ring); d ¼ 0.06, g0 ¼ 2.11. (c),
(d) The same as in (a),(b) above, for structures indicated by (a) and (b) in Fig. 2. The closed vortex line is curved; d ¼ 0.035, g0 ¼ 2.127.
(e),(f) A doubly twisted torus with two closed vortex lines passing with increase of z periodically one through the other; d ¼ 0.04,
g0 ¼ 2.115. (g),(h) A soliton with an unknotted closed vortex line; s=N ¼ −1,M ¼ 3, d ¼ 0.06, g0 ¼ 2.115. (i),(j) A soliton with trefoil
closed vortex line; s=N ¼ −3, M ¼ 3, d ¼ 0.05, g0 ¼ 2.114. (k),(l) A soliton with Solomon’s knot (two linked) closed vortex lines;
s=N ¼ −4, M ¼ 2, d ¼ 0.068, g0 ¼ 2.118.
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Near its upper boundary, the branches transform to spirals
whose interaction destroys the soliton. Finally, with M0 ¼
6 and s ¼ −8, we get the soliton with two doubly linked
closed vortex lines—the Solomon’s knot and a pair of
unlinked unclosed vortex lines with charge 1; their total
charge M ¼ 2, see Figs. 1(k), 1(l), and Ref. [42], Fig. S10.
In a more realistic case of different diffusion coefficients

d⊥ ≠ d∥, the medium is anisotropic in 3D-space r and
soliton orientation is not arbitrary. Simulations show that
the unusual structures found survive weak anisotropy: The
topological structure of intensity distribution and energy
flows remains the same, and anisotropy results only in the
soliton’s reorientation demonstrated for the apple soliton in
the Supplemental Material [42], Fig. S12. For different
initial directions of angular velocity, it is oriented finally
along the axis τ for d⊥ < d∥ and orthogonally to the axis
for d⊥ > d∥, similarly to the case of the precessons [31].
Concluding, we have predicted a new wide class of

topological 3D-dissipative solitons—hula-hoop solitons—
in one-component homogeneous media that can be realized
in large size (larger than about 10 μm) lasers with fast
nonlinearity. Their extreme stability (attractors) is con-
firmed by numerical simulation. Taking into account the
finite medium response time and involving regimes of self-
induced transparency [43], it would be possible to generate
new and even subcycle solitons [37] with various topology;
this extends the capabilities of optical information process-
ing, including coding of topologically stable 3D symbols.
As shown in the Supplemental Material [42], Figs. 13–

15, distribution of energy flow in the solitons underlines
their complicated internal structure with strong coupling of
various vortex lines. The skeletons of the solitons, i.e., the
combination of one or two closed (loops) and one, two, or
three unclosed vortex 3D lines, are tangles [1]—the top-
ology not found earlier for dissipative solitons and,
probably, for any solitons in homogeneous nonlinear
media. It is natural to expect the existence of similar
topological 3D-dissipative solitons in different physical,
chemical, and biological dissipative systems, including
reaction-diffusion systems [7,44].
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