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The Laguerre-Gaussian (LG) modes constitute a complete basis set for representing the transverse
structure of a paraxial photon field in free space. Earlier workers have shown how to construct a device
for sorting a photon according to its azimuthal LG mode index, which describes the orbital angular
momentum (OAM) carried by the field. In this paper we propose and demonstrate a mode sorter based on
the fractional Fourier transform to efficiently decompose the optical field according to its radial profile. We
experimentally characterize the performance of our implementation by separating individual radial modes
as well as superposition states. The reported scheme can, in principle, achieve unit efficiency and thus can
be suitable for applications that involve quantum states of light. This approach can be readily combined
with existing OAM mode sorters to provide a complete characterization of the transverse profile of the
optical field.
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In recent years, the transverse structure of optical photons
has been established as a resource for storing and commu-
nicating quantum information [1]. In contrast to the two-
dimensional Hilbert space of polarization, it takes an
unbounded Hilbert space to provide a mathematical repre-
sentation for the transverse structure of the optical field. The
large information capacity of structured photons has been
recently utilized to enhance quantum key distribution [2–5]
and a multitude of other applications [6–10]. The orbital
angular momentum (OAM) modes have become increas-
ingly popular for implementing multidimensional quantum
states due to the relative ease in generation [11], manipu-
lation [12], and characterization of these modes [13,14].
Although the OAM modes provide a basis set for

representing the azimuthal structure of photons, they
cannot completely span the entire transverse state space,
which encompasses an extra (radial) degree of freedom.
The Laguerre-Gaussian (LG) mode functions provide a
basis to fully represent the spatial structure of the transverse
field [15–17]. These modes are characterized by two
numbers, the radial mode index p ∈ f0; 1; 2;…g and the
azimuthal mode index l ∈ f0;�1;�2;…g. While the
azimuthal number l is well studied due to its association
with the OAM of light [16]; the radial index p has so far
remained relatively unexplored. The quantum coherence
of photons in a superposition of orthogonal radial modes
has been recently demonstrated in the context of quantum
communication and high-dimensional entanglement
[17–19]. The radial LG modes also hold a number of
promising features, and have been studied in the contexts of
self-healing [20], super-resolution [21], and hyperbolic

momentum charge [22]. Despite the growing theoretical
interest in utilizing the radial structure of photons, the
experimental realizations have thus far been impeded
because of the difficulty of measuring these modes.
The initial step in characterization of the radial degree of

freedom of light is to find a radial mode spectrum, i.e., to
find the probability PðpÞ of having the state prepared in
mode index p. This information can be, in principle,
obtained by performing a series of projective measure-
ments. However, the most straightforward method for
implementing the projective measurement of a radial LG
mode requires shaping the amplitude of the incoming light
beam, and the resulting loss makes this approach unsuitable
for operation at the single-photon level [23]. In addition to
this technical difficulty, the projective measurement of a
photon results in its absorption [10]. This inherently limits
the success rate to 1=d in a d-dimensional state space, a rate
that does not scale well with the size of the Hilbert space.
An alternative approach for characterizing the radial mode
structure is to sort an unknown incoming photon by its
radial quantum number. A radial mode sorter would route
the photon to a distinct output that is indexed by the value
of its radial quantum number p, and is thus capable of
performing parallel projective measurements with a success
rate of unity. Previous work has shown the possibility of
sorting of the radial index of LG modes using a random
scatterer [24]. However, the typical efficiency in this
approach was found to be quite low as a consequence of
the strong multimode nature of the scattering process.
Here, we propose and demonstrate a unitary mode sorter

for the radial quantum number p. Our approach relies on a
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key property of the Laguerre-Gaussian modes: the depend-
ence of the effective phase velocity on the radial quantum
number p. We use a set of refractive optical elements to
induce the fractional Gouy phase by realizing a FRFT
module [25]. The FRFT module is then combined with a
Mach-Zehnder interferometer that can discriminate the
modes based on the magnitude of the induced phase.
Our experiment can be understood as an implementation
of the theoretical recipe recently developed in Ref. [26]. We
provide experimental results demonstrating the ability to
sort individual and superposition states residing in the four-
dimensional state space of p ∈ f0; 1; 2; 3g. Furthermore,
we show that our implementation can be combined with the
existing methods of sorting OAM to provide full charac-
terization of the transverse structure of the light field.
To understand the specifics of our implementation, we

examine sorting from an operational point of view. Sorting
is a unitary operation that bijectively maps input photons of
different modes onto different output modes. One approach
to realize such an operation is by successive application of a
discrete Fourier transform (i.e., F-gate), a mode-dependent
phase unit (i.e., Zd-gate), and an inverse discrete Fourier
transform element [26]. (Note that we use the quantum
gates and the bracket notation in order to provide a concise
mathematical description for the evolution of spatial
modes, and not for the purpose of describing the quantum
state of the electromagnetic field.) The discrete Fourier
transform can be realized by a combination of beam
splitters and constant-phase elements (wave plates)
[27,28]. The remaining unit required for sorting the LG
modes according to their radial index is a mode-dependent
phase element, i.e., a Zd-gate.
We next describe how the Zd-gates for the LG modes can

be realized using a natural property of these modes in
propagation. The mathematical form of the LG modes in
cylindrical coordinates at the plane of the beam waist is
given by [22]

LGplðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Ljlj
p is the generalized Laguerre polynomial andw0 is

the beam waist radius. It is a well-known fact that these
modes are eigenmodes of a family of linear transforms
generalizing the Fourier transform. This family of oper-
ations are the FRFTs, and the characteristic equation for LG
modes is given by [29,32]

F a½LGplðr0;θ0Þ� ¼ exp½−ið2pþjljÞa�LGplðr;θÞ: ð2Þ

In the above equation a denotes the order of the FRFT and
for a normal Fourier transform it is π=2. The phase term
here can be interpreted as a modification of the effective
phase velocity of the structured beam, and is reminiscent
of the Gouy phase in laser physics. For the purposes of
this paper we refer to this mode-dependent phase as the
fractional Gouy phase [25,33].
A simple operational unit of our mode sorter, consisting

of a single lens accompanied by free-space propagation,
can realize the FRFT [see Fig. 1(a)] [34]. The propagation
distance z and the lens focal length f are related to the
FRFT order a, the wavelength λ, and the beam waist radius
w0 through the following equations [29]:

z ¼ πw2
0

λ
tan

a
2
; f ¼ πw2

0

λ sin a
: ð3Þ

Upon propagation through this unit, radial modes pick up a
fractional Gouy phase that depends on their respective
indices. Note that the corresponding phase depends on both
the radial index as well as the OAM value. This dependence
does not present a problem as one can use a Dove prism to

(a) (b)

FIG. 1. (a) Realization of the fractional Fourier transformation (FRFT) with a single lens. The Laguerre-Gaussian functions are the
eigenmodes of the FRFT and thus maintain their shape under this transformation. Here a p ¼ 2 mode is shown as an example. (b) A
d-dimensional quantum sorter composed of discrete F-gates and a Zd-gate. The Zd-gate is implemented by the FRFT in our experiment.
Note that the design can be simplified by replacing the first F-gate with a 1-to-d beam splitter, which is permissible because the system
has only one effective input port.
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cancel the l-dependence and thereby retain only the
p-dependent phase [35].
Having examined the two building blocks, i.e., the

discrete Fourier transform (F-gate) and the Zd-gate, we
can design a radial index mode sorter. A schematic
representation of the concept is provided in Fig. 1(b).
Let us assume that l ¼ 0 and denote the LG mode by jpi.
We suppose that the dimension of the state space is d, and
that p takes on the values 0; 1;…; d − 1. The output port
for each mode is represented by a different ket jki, where
k ¼ 0; 1;…; d − 1. Initially, all modes are present in the
same input port jkini, and the state vector is denoted by
jpi ⊗ jkini. To sort different modes according to their
radial indices, we ensure that their output ports depend only
on their radial indices. This operation can be expressed as
jpi ⊗ jkini ↦ jpi ⊗ jk ¼ pi. The successive application
of a discrete Fourier transform (F-gate), a Zd-gate, and a
F†-gate can realize this transformation. The explicit trans-
formation that each gate provides is given below,

F̂½jpi ⊗ jki� ¼ 1ffiffiffi
d

p
Xd−1

m¼0

exp

�
i2πmk

d

�
jpi ⊗ jmi

Ẑj
d½jpi ⊗ jki� ¼ exp

�
i2πpj
d

�
jpi ⊗ jki; ð4Þ

where F̂ and Ẑd indicates the F- and Zd-gate, respectively,
and j is the order of the corresponding Zd-gate. The F†-gate
is the inverse F-gate. A Zd-gate of order j is equivalent to j
subsequent applications of the Z1

d-gate [36].
In the first part of our implementation, we realize a

binary version of our proposed radial sorter. By setting
d ¼ 2 in Eq. (4), the setup reduces to an interferometer with
a FRFT in one of the arms. To have more control over the
phase we also include a constant phase shifter in the other
arm. The Zd-gate unit introduces a fractional Gouy phase to
each of the input modes and causes distinct input modes
to interfere constructively at different output ports. Thus
photons of different radial indices leave the interferometer
at different output ports and the sorting transformation is

achieved. We note that Leach et al. [35] have previously
demonstrated a conceptually similar design for an OAM
mode sorter.
In the next step, we increase the dimensionality of the

system by cascading two successive binary sorters of the
type shown in Fig. 1(b). This configuration allows us to sort
up to three radial modes. Compared to the multichannel
interferometer proposed in [26], this cascading scheme
is advantageous in terms of flexibility, complexity, and
practicality. (For a comparative analysis please refer to
Supplemental Material [29].) A schematic representation
of our setup is depicted in Fig. 2. A 633 nm HeNe laser is
coupled to a single mode fiber. The light emerging from the
fiber is then collimated to illuminate a SLM. A binary
computer generated hologram is imprinted onto the SLM
to generate the desired field in the first diffraction order
[37,38]. In the first stage, we use a lens with a focal length of
30 cm and with a propagation distance of z ¼ 8.79 cm to
realize a FRFT of the order π=4 for a beam waist radius of
w0 ¼ 207 μm.The second stage of the sorter uses two lenses
with the same configuration to provide a FRFTwith twice as
much phase shift. We note that the interferometer shown in
the schematic is imbalanced because of the need to introduce
the FRFT lenses in one arm. We have taken care to keep the
path imbalance much shorter than the coherence length of
our laser source and the Rayleigh ranges of our modes.
In order to characterize the proposed scheme, we first

generate radial modes and detect the output of our setup
using charge coupled devices (CCD). The images from the
three CCD cameras at the three output ports of the setup are
shown in Figs. 3(a) and 3(b). In Fig. 3(a) even-order modes
(p ¼ 0, 2) leave one of the output ports of the first binary
sorter to CCD1 and the odd-order modes leave the other
output port. The odd-order modes are then fed into the
second stage, and are routed towards CCD2, and CCD3. By
changing the phase in the first stage one can send odd-order
modes to CCD1 and send the even-order modes to the
second stage to be sorted to CCD2, and CCD3. The
cascaded binary sorters allow for sorting of up to three

(a)

(b)

(c)

FIG. 2. (a) Schematics of the experimental setup. The radial mode is generated by a computer generated hologram on the spatial light
modulator (SLM). The quarter wave plate (QWP), half wave plate, and QWP combination works as a geometrical phase shifter. Further
detail about the setup can be found in Supplemental Material [29]. [(b) and (c)] The measured intensity profile of the generated p ¼ 2
and the p ¼ 3 modes.

PRL 119, 263602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 DECEMBER 2017

263602-3



separate modes. As an additional test of the validity of our
scheme we produce linear superpositions of three radial
modes and feed them into the first stage. We then register
the image of the three output ports on the CCDs simulta-
neously. It is clear from Fig. 3(c) that although all the input
photons share a superposition of three radial indices, the
output photons are sorted according to their radial indices.
We note that to sort different sets of modes one has to
choose appropriate phase differences for the two binary
sorters. The value of the induced phases is different for two
different sets of modes, and can be calculated using the
formula for the fractional Gouy phase in Eq. (2). Indeed,
a priori knowledge about the input state is necessary for an
appropriate sorting. For any finite-dimensional sorter the
input state should be restricted to a specific range.
As mentioned above, our scheme can also be used for

sorting of photons according to their OAM number. To
demonstrate this capability we use the first stage of our
setup to implement a binary sorting of LG10 and LG12. The
images of the output ports are plotted in Fig. 4, and confirm
that photons of different OAMs leave the interferometer at
separate ports. We underscore the fact that here we have
separated two OAM modes of the same radial order whose
OAM values are different by Δl ¼ 2. The spacing by two
units results from the fact that the phase shift from the
FRFT is Δϕ ¼ ð2pþ lÞa. The extra factor 2 for p index
implies that the l spacing has to be twice larger. Of course,
by selecting the appropriate order of the FRFT, our device
can sort the LG beams with Δl ¼ 1 as well.
We have quantified the cross-talk of our setup by

measuring the conditional probability matrix. Each element
of this matrix is defined as the probability of detecting a

photon at a given mode conditioned on the radial index of
the input. This quantity is equal to the power in a specific
port divided by the total output power. The resulting matrix
is plotted in Fig. 4. To use a single figure of merit we use
the total cross-talk, which is a sum of the power in the
wrong ports divided by the total output power. For our
specific implementation the total cross-talk is measured to
be 15%. In addition we emphasize that this cross-talk is not
intrinsic to the protocol. We believe that using high-quality
antireflection coated optics, active stabilization, and more
careful alignment can mitigate cross-talk significantly and
bring the sorter to its theoretical limit of 100% efficiency
and no cross-talk.
We note that our design can also be employed for sorting

the Hermite-Gaussian (HG) modes. Coherent detection of
LG and HG modes has been recently identified as an
optimal means of localizing closely spaced incoherent
sources [21,39–41]. It is thus reasonable to expect that
an efficient sorting mechanism can have further implica-
tions for microscopy, given the significance of super-
resolution in that field. In addition, a similar approach
can be applied to sorting the family of Bessel-vortex beams.
Because of the nondiffracting property of these modes,
free-space propagation can serve as the Z-gate and there is
no need for realization of the FRFT module. Hence, a
simplified version of our experiment with the FRFT
components removed would be able to sort Bessel beams
with different longitudinal wave vectors.
In summary we have demonstrated a general framework

for efficient measurement (i.e., sorting) of the radial index
of LG modes. Our protocol includes two essential ele-
ments: the discrete Fourier transform (F-gate) and the
Zd-gate. While discrete Fourier transform can be realized
using beam splitters and wave plates, we have employed
the fractional Gouy phase to realize the Zd-gate efficiently.
As a demonstration we have implemented a binary (d ¼ 2)
version of our protocol and have cascaded two binary
sorters to sort three different LG modes according to their
radial indices. Combined with a total angular momentum
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FIG. 3. Output port image for inputs in the form of individual
LG modes and their superposition states. The position of each
CCD is shown in Fig. 2. (a) The path lengths in the first stage are
adjusted so the even-order modes are sent to CCD1 whereas
the odd-order modes are sent to the second stage where they are
further sorted so that p ¼ 1 (p ¼ 3) is directed to CCD2 (CCD3).
(b) The phase shifter in the first stage is readjusted to send odd-
order modes to CCD1 and the even-order modes to the second
stage. (c) The images onCCDswhen a superposition state is sent to
the sorter. p ¼ 0, 1, 2 means that a superposition state composed
of p ¼ 0, p ¼ 1, and p ¼ 2 modes is generated and injected.
All images in the same line are captured simultaneously.
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FIG. 4. (a) Experimentally measured probability of detection as
a function of input and output mode indices. (b) The measured
output intensity profile for an input prepared as a superposition of
p ¼ 1;l ¼ 0 and p ¼ 1;l ¼ 2 modes.
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sorter, our protocol provides a platform for accessing the
complete spatial bandwidth of photons for encoding
information. We believe that implementation of our pro-
tocol can facilitate fundamental studies of the spatial modes
of light as well as a variety of prevalent applications of such
states in quantum communications, imaging, and quantum
metrology [42].
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