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The nuclear recoil effect on the g factor of Li-like ions is evaluated. The one-electron recoil contribution
is treated within the framework of the rigorous QED approach to the first order in the electron-to-nucleus
mass ratio m=M and to all orders in the parameter αZ. These calculations are performed in a range
Z ¼ 3–92. The two-electron recoil term is calculated for low- and middle-Z ions within the Breit
approximation using a four-component approach. The results for the two-electron recoil part obtained in
the Letter strongly disagree with the previous calculations performed using an effective two-component
Hamiltonian. The obtained value for the recoil effect is used to calculate the isotope shift of the g factor of
Li-like ACa17þ with A ¼ 40 and A ¼ 48 which was recently measured. It is found that the new theoretical
value for the isotope shift is closer to the experimental one than the previously obtained value.
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High-precision measurements of the g factor of highly
charged ions [1–8] have triggered a great interest in the
corresponding theoretical calculations [9–26]. To date, these
experiments and theory have allowed the most stringent tests
of bound-state quantum electrodynamics (QED) in the
presence of a magnetic field and have provided the most
precise determination of the electron mass [7,27]. In Ref. [8]
the isotope shift of the g factor of Li-like ACa17þ with
A ¼ 40 and A ¼ 48 has been measured.
The theoretical value of the g-factor isotope shift is

generally given by a sum of the nuclear recoil (mass shift)
and nuclear size (field shift) contributions. For low- and
middle-Z ions it is mainly determined by the mass shift,
which in the case of the s states is of pure relativistic origin.
The fully relativistic theory of the nuclear recoil effect can be
formulated only in the framework of QED. Moreover, the
mass shift is the only effect which requires the employment
of the bound-state QED theory beyond the external field
approximation, providing a unique access to QED beyond
the Furry picture at strong-coupling regime [8].
In Ref. [8] the theoretical value for the g-factor mass shift

of Li-like calcium was obtained combining the calculations
of the one-electron recoil contribution to all orders in αZ
and the two-electron recoil contribution within the Breit
approximation. While the one-electron contribution was
directly evaluated using the QED theory [13,28], the two-
electron part was obtained by extrapolating the lowest-
order relativistic results from Refs. [29,30]. Combined with
the nuclear size effect, the calculation of which causes no
problem, the theoretical prediction for the isotope shift of
the g factor of ACa17þ with A ¼ 40 and A ¼ 48 was found
to be in agreement with the experimental one but at the
edge of the experimental error bar.
In the present Letter we perform the most accurate to

date evaluation of the nuclear recoil contribution to the g
factor of highly charged Li-like ions. First, we improve the

accuracy of the calculation of the one-electron QED
recoil contribution for Li-like calcium [8] and extend it
to a wide range of the nuclear charge number, Z ¼ 3–92.
Second, we calculate the two-electron recoil contribution to
the g factor in a range Z ¼ 3–20 within the Breit approxi-
mation using a four-component approach and investigate
reasons for a strong disagreement between the obtained
results and the previous calculations [29,30]. Finally, we
present the theoretical prediction for the isotope shift of the
g factor of Li-like ACa17þ with A ¼ 40 and A ¼ 48, which
also includes the nuclear size effect, and compare it with
experiment [8].
The QED theory for the nuclear recoil effect on the

atomic g factor to first order in the electron-to-nucleus mass
ratio m=M and to all orders in αZ was developed in
Ref. [13]. This theory was employed to derive a complete
αZ-dependent formula for the recoil effect on the g factor of
a H-like ion. The obtained formula can be also applied to a
many-electron ion (atom) with one electron over closed
shells, provided the electron propagators are defined for the
vacuum including the closed shells [28]. In this case, the
formula also incorporates the two-electron nuclear recoil
contributions to zeroth order in 1=Z.
We consider an ion with one electron over closed shells

which is put into the classical homogeneous magnetic field,
AclðrÞ ¼ ½H × r�=2. For simplicity, we assume that H is
directed along the z axis. According to Refs. [13,31], to
zeroth order in 1=Z, them=M nuclear recoil contribution to
the g factor for a state a is given by (ℏ ¼ c ¼ 1, e < 0)

Δg ¼ 1

μ0ma

i
2πM

Z
∞

−∞
dω

� ∂
∂H h ~aj½pk −DkðωÞ þ eAk

cl�
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cl�j ~ai

�
H¼0
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Here μ0 is the Bohr magneton, ma is the angular momen-
tum projection of the state under consideration, pk ¼ −i∇k

is the momentum operator, DkðωÞ ¼ −4παZαlDlkðωÞ,

Dlkðω;rÞ¼−
1

4π

�
expðijωjrÞ

r
δlkþ∇l∇k expðijωjrÞ−1

ω2r

�

ð2Þ

is the transverse part of the photonpropagator in theCoulomb
gauge, α is a vector incorporating the Dirac matrices, and the
summation over the repeated indices is implicit. The tilde
sign indicates that the corresponding quantity [the wave
function, the energy, and the Coulomb Green’s function
~GðωÞ] must be calculated in presence of the magnetic field.
Since we consider an ion with one valence electron over the
closed shells, the Coulomb Green’s function is defined as
~GðωÞ ¼ P

~nj ~nih ~nj½ω − ~εn þ iηð~εn − ~εFÞ�−1, where ~εF is the

Fermi energy and η → 0. Equation (1) includes both one- and
two-electron nuclear recoil contributions to zeroth order in
1=Z. For the ð1sÞ22s state of a Li-like ion, the ð1=ZÞ0 two-
electron contribution is equal to zero. However, this formula
can be used to derive an effective two-electron recoil operator
which describes the recoil effect on the g factor within the
Breit approximation. The expression for this operator is
given below.
First, we consider the one-electron contribution. For the

practical calculations, it is conveniently represented by a
sum of low-order and higher-order terms, Δg¼ΔgLþΔgH,
where

ΔgL¼
1

μ0Hma

1

M
hδaj
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μ0Hma

i
2πM

Z
∞

−∞
dω

�
hδaj

�
DkðωÞ − ½pk; V�

ωþ i0

�
Gðωþ εaÞ

�
DkðωÞ þ ½pk; V�

ωþ i0

�
jai þ haj

�
DkðωÞ − ½pk; V�

ωþ i0

�

×Gðωþ εaÞ
�
DkðωÞ þ ½pk; V�

ωþ i0

�
jδai þ haj

�
DkðωÞ − ½pk; V�

ωþ i0

�
Gðωþ εaÞðδV − δεaÞ

×Gðωþ εaÞ
�
DkðωÞ þ ½pk; V�

ωþ i0

�
jai

�
: ð4Þ

HereVðrÞ ¼ −αZ=r is theCoulombpotential of the nucleus,
δVðxÞ ¼ −eα ·AclðxÞ, GðωÞ¼

P
njnihnj½ω−εnð1− i0Þ�−1

is the Dirac-Coulomb Green’s function, δεa ¼ hajδVjai,
and jδai ¼ Pεn≠εa

n jnihnjδVjaiðεa − εnÞ−1. The low-order
term can be derived from the relativistic Breit equation,
while the derivation of the higher-order term requires the
employment of QED beyond the Breit approximation.
For this reason, we term them as non-QED and QED one-
electron contributions, respectively.
To derive the effective two-electron recoil operator we

need to consider in Eq. (1) the two-electron contributions
which describe the interaction of the valence electron with
the closed-shell electrons. It can easily be done according to
the corresponding prescriptions in Refs. [28,32]. Within the
Breit approximation, we obtain

Δgint ¼ Δgð1Þint þ Δgð2Þint ; ð5Þ
where

Δgð1Þint ¼ −
2

μ0Hma
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�
; ð8Þ

ϵikl is the Levi-Civita symbol, jδci ¼ Pεn≠εc
n jnihnjδVjci×

ðεc − εnÞ−1, and the summation (c) runs over the closed

shells. The Δgð1Þint term corresponds to the combined inter-
action due to δV and the two-electron part of the effective
recoil Hamiltonian (see Ref. [33] and references therein),

HM ¼ 1

2M

X
i;k

�
pi · pk −

αZ
ri

�
αi þ
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�
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�
: ð9Þ

The one-electron part of this operator corresponds to the

first term in Eq. (3). The Δgð2Þint term leads to the following
magnetic recoil operator:

Hmagn
M ¼ −μ0H

m
M

X
i;k

�
½ri × pk�

−
αZ
2rk

�
ri ×

�
αk þ

ðαk · rkÞrk
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���
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where we have added the corresponding one-electron part
from Eq. (3). The first term in the right-hand side of Eq. (10)
defines the nonrelativistic contribution derived previously
by Phillips [34].
Thus, within the lowest-order relativistic (Breit) approxi-

mation, the recoil effect on the g factor to the first order in
m=M can be evaluated by adding the operators (9) and (10)
to the Dirac-Coulomb-Breit Hamiltonian, considered in
the presence of the external magnetic field. As mentioned
above, for the ð1sÞ22s state of a Li-like ion the ð1=ZÞ0 two-
electron recoil contribution equals zero. However, we can
use the derived effective operators to evaluate the 1=Z and
higher-order contributions to the recoil effect within the
Breit approximation.
For a point-charge nucleus, the low-order one-electron

term ΔgL can be evaluated analytically [13],

ΔgL ¼ −
m
M

2κ2ε2 þ κmε −m2

2m2jðjþ 1Þ ; ð11Þ

where ε is the Dirac energy and κ ¼ ð−1Þjþlþ1=2ðjþ 1=2Þ
is the angular momentum-parity quantum number. To
leading order in αZ, we have

ΔgL ¼ −
m
M

1

jðjþ 1Þ
�
κ2 þ κ

2
−
1

2
−
�
κ2 þ κ

4

� ðαZÞ2
n2

þ � � �
�
:

ð12Þ
It can be seen that for an s state (κ ¼ −1) the nonrelativistic
contribution to ΔgL is equal to zero and, therefore, the low-
order term is of pure relativistic [∼ðαZÞ2] origin.
The numerical calculation of the higher-order one-

electron contribution (4) was performed in the same way
as in Refs. [14,35]. After the integration over angles, the
summation over the intermediate electron states was carried
out using the finite basis set method with the basis functions
constructed from B splines [36]. The ω integration was
performed analytically for the simplest “Coulomb” con-
tribution (the term without the D vector) and numerically
for the “one-transverse” and “two-transverse” photon con-
tributions (the terms with one and two D vectors, respec-
tively) using the standard Wick’s rotation. The higher-order
(QED) contribution ΔgH for the 2s state is conveniently
expressed in terms of the function Pð2sÞðαZÞ,

Δgð2sÞH ¼ m
M

ðαZÞ5
8

Pð2sÞðαZÞ: ð13Þ
The corresponding numerical results are presented in
Table I. The uncertainties have been obtained by studying
the stability of the results with respect to a change of the
basis set size. For Z ¼ 20 the presented result agrees with
that from Ref. [8] but is given to a higher accuracy.
To get the total one-electron recoil contribution, we

should also account for the radiative (∼α) and second-order
(inm=M) recoil corrections. To the lowest order in αZ these
corrections were evaluated in Refs. [37–40].

As noted above, for the ð1sÞ22s state of a Li-like ion the
two-electron recoil contribution to the g factor is equal to
zero, if one neglects the interaction between the electrons.
This approximation corresponds to zeroth order in 1=Z.
The recoil contributions of the first and higher orders in
1=Z have been evaluated within the Breit approximation
using the operators (9), (10) and the standard expression for
the Dirac-Coulomb-Breit Hamiltonian,

HDCB ¼ ΛðþÞ
�X

i

hDi þ
X
i<k

Vik

�
ΛðþÞ; ð14Þ

where the indices i and k enumerate the atomic electrons,
ΛðþÞ is the product of the one-electron projectors on the
positive-energy states (which correspond to the potential
V þ δV, where V is the Coulomb potential of the nucleus
and δV describes the interaction with the external magnetic
field), hDi is the one-electron Dirac Hamiltonian including
δV, and

Vik ¼ e2αρi α
σ
kDρσð0; rikÞ ¼ VC

ik þ VB
ik

¼ α

rik
− α

�
αi · αk

rik
þ 1

2
ðαi · ∇iÞðαk · ∇kÞrik

�
ð15Þ

is the sum of the Coulomb and Breit electron-electron
interaction operators.
Let us consider first the calculation of the 1=Z recoil

contribution, which can be evaluated using perturbation
theory. This contribution is conveniently represented by a
sum of four terms,

Δgð1=ZÞint ¼ Δgð1Þint þ Δgð2Þint þ Δgð1mÞ
int þ Δgð2mÞ

int ; ð16Þ

TABLE I. The higher-order (QED) recoil contribution to the 2s
g factor, expressed in terms of the function Pð2sÞðαZÞ defined by
Eq. (13).

Z Pð2sÞ
Coul Pð2sÞ

tr1 Pð2sÞ
tr2 Pð2sÞðαZÞ

3 −1.082 37.719 −22.644 13.993(1)
4 −1.067 29.519 −15.755 12.697(1)
6 −1.0403 21.1043 −9.1264 10.9376(2)
8 −1.0160 16.7563 −5.9884 9.7519(1)
10 −0.9943 14.0726 −4.2021 8.8762(1)
12 −0.9749 12.2396 −3.0704 8.1943(1)
14 −0.9575 10.9033 −2.3010 7.6447(1)
16 −0.9422 9.8841 −1.7509 7.1911(1)
18 −0.9287 9.0809 −1.3421 6.8101(1)
20 −0.9169 8.4322 −1.0292 6.4860(1)
30 −0.8818 6.4789 −0.1810 5.4160(1)
40 −0.8836 5.5765 0.1911 4.8840(1)
50 −0.9244 5.1802 0.4168 4.6727(1)
60 −1.0150 5.1326 0.6005 4.7182(1)
70 −1.181 5.426 0.795 5.040(1)
80 −1.482 6.186 1.050 5.753(3)
90 −2.07 7.82 1.45 7.20(1)
92 −2.26 8.33 1.57 7.64(2)

PRL 119, 263001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 DECEMBER 2017

263001-3



where Δgð1Þint combines the one-electron nonmagnetic recoil
term from Eq. (9) with the electron-electron interaction (15)

and with the magnetic interaction δV, Δgð2Þint combines the
two-electron nonmagnetic recoil term from Eq. (9) with the
electron-electron interaction (15) and with the magnetic

interaction δV, Δgð1mÞ
int combines the one-electron magnetic

recoil term from Eq. (10) with the electron-electron inter-

action (15), andΔgð2mÞ
int combines the two-electron magnetic

recoil term from Eq. (10) with the electron-electron inter-
action (15). The numerical evaluation of all these terms has
been performed for extended nuclei in the range Z ¼ 3–20
using the finite basis set method with the basis functions
constructed from B splines. The results, which are
expressed in terms of the function BðαZÞ defined by

Δgð1=ZÞint ¼ m
M

ðαZÞ2
Z

BðαZÞ; ð17Þ

are presented in Table II. All digits presented in the table
should be correct. The extrapolation to the limit αZ → 0
leads to Bð0Þ ¼ −0.5155ð2Þ. This value disagrees with the
corresponding coefficient Bð0Þ ¼ −0.8603ð8Þ which can
be derived (see Ref. [26]) by fitting the lowest-order
relativistic results of the fully correlated calculations within
the framework of a two-component approach performed by
Yan [29,30]. To find out the reasons for this disagreement,
we have also evaluated the 1=Z recoil corrections using the
effective two-component Hamiltonian approach [29,39,
41–43]. The calculations have been performed by pertur-
bation theory starting with the nonrelativistic independent-
electron approximation. The summations over electron
spectra have been carried out using the finite basis set
method for the Schrödinger equation with the basis func-
tions constructed from B splines [36]. With this approach,
we obtain Bð0Þ ¼ −0.8603, provided we account for the
same contributions as described in Refs. [29,30,42]. This
corresponds to the evaluation of the spin-dependent terms
in the magnetic-field-dependent part of the effective

two-component Hamiltonian with the Schrödinger wave
function. In the previous calculations [29,30,42] it was
assumed that only these terms contribute for the s states.
Our study showed, however, that this is not the case. We
have found that there exist some additional contributions
to the lowest relativistic order. To the first order in 1=Z,
these contributions originate from the spin-independent
terms in the magnetic-field-dependent part of the effective
Hamiltonian [the first term in Eq. (10)] if they are combined
with the spin-orbit and spin-other-orbit coupling terms in
the nonmagnetic part of the two-component Hamiltonian
(the expressions for these couplings see, e.g., in Ref. [41]).
The spin-orbit coupling leads to a nonzero result if it is
combined with the Coulomb electron-electron interaction.
The evaluation of these terms gives additionally 0.3447 to
Bð0Þ. This leads to the total result Bð0Þ ¼ −0.5156 which
agrees with the value obtained in our four-component
approach.
The evaluation of the second and higher orders in 1=Z

contributions within the Breit approximation was also
based on the operators (9), (10) and the standard expression
for the Dirac-Coulomb-Breit Hamiltonian (14). This was
done by the use of a recently developed recursive pertur-
bative approach [44,45]. The results, which are expressed
in terms of the function CðαZÞ defined by

Δgð1=Z
2þÞ

int ¼ m
M

ðαZÞ2
Z2

CðαZÞ; ð18Þ

are presented in Table III. TheCð1þ2ÞðαZÞ andCð1mþ2mÞðαZÞ
parts, presented in the table, correspond to the nonmagnetic
and magnetic recoil contributions defined by operators (9)
and (10), respectively. The indicated error bars are due to the
numerical uncertainties of the computation.
To derive the total value of the isotope shift, we need also

to evaluate the nuclear size effect. In case of Ca isotopes,
this contribution can be calculated in the one-electron

TABLE II. The 1=Z recoil contribution to the g factor of the
ð1sÞ22s state of Li-like ions, expressed in terms of the function
BðαZÞ defined by Eq. (17). The individual contributions corre-
spond to the related terms in Eq. (16).

Z Bð1ÞðαZÞ Bð2ÞðαZÞ Bð1mÞðαZÞ Bð2mÞðαZÞ BðαZÞ
3 −0.8835 0.0213 0.0000 0.3466 −0.5157
4 −0.8836 0.0213 0.0000 0.3465 −0.5158
6 −0.8839 0.0214 0.0000 0.3464 −0.5161
8 −0.8844 0.0216 0.0000 0.3462 −0.5166
10 −0.8849 0.0218 0.0000 0.3459 −0.5172
12 −0.8856 0.0220 0.0001 0.3456 −0.5179
14 −0.8864 0.0223 0.0001 0.3453 −0.5187
16 −0.8873 0.0227 0.0001 0.3449 −0.5197
18 −0.8883 0.0231 0.0001 0.3444 −0.5207
20 −0.8894 0.0235 0.0001 0.3439 −0.5219

TABLE III. The 1=Z2 and higher-order recoil contribution to the
g factor of the ð1sÞ22s state of Li-like ions, expressed in terms of
the function CðαZÞ defined by Eq. (18). The Cð1þ2ÞðαZÞ and
Cð1mþ2mÞðαZÞ parts correspond to the nonmagnetic and magnetic
recoil contributions defined by operators (9) and (10), respectively.

Z Cð1þ2ÞðαZÞ Cð1mþ2mÞðαZÞ CðαZÞ
3 0.61(5) −0.75ð5Þ −0.14ð7Þ
4 0.59(3) −0.76ð3Þ −0.17ð4Þ
6 0.566(10) −0.775ð10Þ −0.209ð14Þ
8 0.556(5) −0.782ð5Þ −0.226ð7Þ
10 0.550(3) −0.786ð3Þ −0.236ð4Þ
12 0.546(2) −0.789ð2Þ −0.243ð3Þ
14 0.545(2) −0.790ð2Þ −0.245ð3Þ
16 0.543(2) −0.791ð2Þ −0.248ð3Þ
18 0.542(1) −0.792ð1Þ −0.250ð2Þ
20 0.542(1) −0.792ð1Þ −0.250ð2Þ
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approximation using the analytical formula from Ref. [17].
The root-mean-square nuclear charge radii and the related
uncertainties were taken from Ref. [46].
The individual contributions to the isotope shift of

the g factor for 40Ca19þ − 48Ca19þ are presented in
Table IV. The uncertainty of the finite nuclear size con-
tribution includes both the nuclear radius and shape
variation effects. The shape variation uncertainty was
estimated as a difference between the calculations per-
formed for the Fermi and sphere nuclear models. The
total theoretical value of the isotope shift amounts to

ΔgðtheorÞIS ¼ 11.056ð16Þ × 10−9. This value differs from its

previous evaluation, ΔgðtheorÞIS ¼ 10.305ð27Þ × 10−9 [8],
which included the two-electron recoil contribution
obtained by extrapolating the corresponding results from
Refs. [29,30], and is significantly closer to the experimental

value, ΔgðexpÞIS ¼ 11.70ð1.39Þ × 10−9 [8].
Concluding, in this Letter we have evaluated the nuclear

recoil effect on the g factor of Li-like ions. The calculations
included the m=M one-electron recoil correction in the
framework of the fully relativistic formalism and the two-
electron recoil contribution within the Breit approximation.
A large discrepancy was found between the present result
for the two-electron recoil contribution obtained using the
four-component approach within the Breit approximation
and its previous calculation performed using the effective
two-component Hamiltonian. An analysis of the discrep-
ancy showed that some important contributions were
omitted in the previous works. As the result, we have
obtained the most precise to date theoretical values for the
recoil effect on the g factor of Li-like ions. Combining the
nuclear recoil and size effects, the isotope shift of the g
factor of Li-like ACa17þ with A ¼ 40 and A ¼ 48 has been
evaluated providing better agreement between theory and
experiment. We hope that the obtained results will also
pave the way for QED tests beyond the Furry picture in
experiments with highly charged ions which are planned
at the Max-Planck-Institut für Kernphysik in Heidelberg
and at the HITRAP/FAIR facilities in Darmstadt.
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