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We show that the empirical linear relation between the magnitude of the EMC effect in deep inelastic
scattering on nuclei and the short-range correlation scaling factor a2 extracted from high-energy
quasielastic scattering at x ≥ 1 is a natural consequence of scale separation and derive the relationship
using effective field theory. While the scaling factor a2 is a ratio of nuclear matrix elements that
individually depend on the calculational scheme, we show that the ratio is independent of this choice. We
perform Green’s function Monte Carlo calculations with both chiral and Argonne-Urbana potentials to
verify this and determine the scaling factors for light nuclei. The resulting values for 3He and 4He are in
good agreement with experimental values. We also present results for 9Be and 12C extracted from
variational Monte Carlo calculations.
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Introduction.—Deep inelastic scattering (DIS) of leptons
on hadrons can be precisely described as high-energy
(perturbative) lepton-quark scattering weighted by the
parton distribution functions (PDFs) that describe the
probability of finding a quark or gluon inside the hadron.
DIS has been used to map out the quark and gluon parton
distributions for the proton and subsequently nuclei. In
recent years, these experiments have revealed new and
intriguing glimpses of nuclear structure that we seek to
derive using effective field theory (EFT) methods.
In 1983, the European Muon Collaboration (EMC) [1]

measured the structure functions FA
2 ðx;Q2Þ describing DIS

for iron and deuterium targets, where Bjorken x ¼ Q2=ð2p ·
qÞ and Q2 ¼ −q2 are defined in terms of the target four-
momentum p and the momentum transfer from the lepton to
the target, q. The results of these experiments could not be
explained by nuclear structure (i.e., momentum distributions
of nucleons inside the nucleus) without modifying nucleon
structure [1]. This “EMC effect” was unexpected since the
typical binding energy per nucleon is so much smaller
(< 1%) than the nucleon mass and the energy transfer
involved in a DIS process. The EMC effect has now been
mapped out for DIS on targets ranging from helium to lead
(see Refs. [2–6] for reviews) and similar medium modifica-
tions of parton structure have been investigated in other
reactions [5,7]. The picture that has emerged is that the ratio

REMCðA; xÞ ¼
2FA

2 ðx;Q2Þ
AFd

2ðx;Q2Þ ; ð1Þ

with A the atomic number and d the deuteron, can deviate
from unity by up to 20% over the range 0.05 < x < 0.7. The

ratio has very little dependence onQ2 and so we suppress it.
Experimental data also suggest that for an isoscalar nucleus,
the x and A dependence of REMC − 1 is factorizable. That is,
the shape of the deviation ofREMC from unity is independent
of Awhile the magnitude of the deviation depends only on A
[8,9]. REMC forms a straight line in intermediate x, and one
can express the magnitude of the EMC effect by the slope
dREMCðA; xÞ=dx for 0.35 ≤ x ≤ 0.7. Since Bjorken x is
defined with respect to the parent nucleon of the struck
parton, it is bounded in the range 0 ≤ x ≤ A.
In recent experiments at JeffersonLab, itwas found that the

ratio of quasielastic (QE) scattering cross sections,

a2ðA; xÞ≡ 2σA
Aσd

����
1.5<x<2

; ð2Þ

forms an x-independent plateau with negligible Q2 depend-
ence for targets from 3He to 197Au [10–14]. This factor a2 is
referred to as the short-range correlation (SRC) scaling factor.
A remarkable empirical discovery is that the EMC slope and
the SRC scaling factor a2 are linearly related [15,16].
In this Letter, we explain this linear relationship using

EFTand compute a2 in light nuclei. We first review the EFT
description of the EMC effect of Ref. [17] which explained
the factorization of the x and A dependence of REMC − 1,
and then show that the linear relation follows naturally from
this. Factorization also shows that, up to higher-order
corrections, a2 is scheme and scale independent even
though it arises from scheme- and scale-dependent matrix
elements in different nuclei. Finally, the values of a2 for 3He
and 4He are computed using the Green’s function
Monte Carlo (GFMC) method with both chiral and
Argonne-Urbana potentials to confirm the scheme and scale
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independence and are compared with data, showing close
agreement. Results for 9Be and 12C extracted from varia-
tional Monte Carlo (VMC) calculations [18] are also
discussed.
EFT analysis.—Chiral EFT is constructed based on the

chiral symmetry of QCD. It has been successfully applied
to many aspects of meson [19], single-nucleon [20], and
multinucleon systems [21]. In particular, chiral EFT has
been applied to PDFs in the meson and single-nucleon
[22–27] and multinucleon sectors [17,28] as well as to
other light-cone-dominated observables [29–33].
The structure functions describing lepton-nucleus

DIS, FA
2 ðx;Q2Þ, can be expressed in terms of nuclear

PDFs qAi ðx;QÞ (for simplicity of presentation, we choose
the DIS scheme where the renormalization and factoriza-
tion scale are set equal to the hard scale of DIS,
μ ¼ μf ¼ Q, although the results below do not depend
on the scheme) as FA

2 ðx;Q2Þ ¼ P
iQ

2
i x qAi ðx;QÞ,

where the sum is over quarks and antiquarks of flavor i
of charge�Qi in a nucleus A. In what follows, we focus on
the isoscalar PDFs, qA ¼ qAu þ qAd ; in the relevant experi-
ments, nuclear PDFs are typically “corrected” for isospin
asymmetry of the targets. The dominant (leading-twist)
parton distributions are determined by target matrix ele-
ments of bilocal light-cone operators. Applying the oper-
ator product expansion, the Mellin moments of the parton
distributions,

hxniAðQÞ ¼
Z

A

−A
xnqAðx;QÞdx; ð3Þ

are determined by matrix elements of local operators,

hA;pjOμ0���μn jA;pi ¼ hxniAðQÞpðμ0…pμnÞ ð4Þ
with

Oμ0���μn ¼ q̄γðμ0iDμ1 � � � iDμnÞq; ð5Þ
where ð� � �Þ indicates that the enclosed indices have been
symmetrized and made traceless and Dμ ¼ ðD⃗μ − D⃖μÞ=2 is
the covariant derivative.
In nuclear matrix elements of these operators, there are

other relevant momentum scales below Q: Λ ∼ 0.5 GeV is
the range of validity of the EFT, and P ∼mπ is a typical
momentum inside the nucleus (mπ is the pion mass). These
scales satisfy Q ≫ Λ ≫ P and the ratio Λ=Q is the small
expansion parameter in the twist expansion while the ratio
ϵ ∼ P=Λ ∼ 0.2–0.3 is the small expansion parameter for the
chiral expansion.
In EFT, each of the QCD operators is matched to

hadronic operators at the scale Λ [17]

Oμ0…μn → ∶hxniNMnvðμ0 � � � vμnÞN†N½1þ αnN†N�;
þ hxniππαi∂ðμ0 � � � i∂μnÞπα þ � � � ∶; ð6Þ

where the operators enclosed by ∶∶ are normal ordered
(with respect to the vacuum state), NðπÞ is the nucleon
(pion) field, v is the nucleon four-velocity, and hxniNðπÞ is
the nth moment of the isoscalar quark PDF in a free
nucleon (pion). The hxniNðπÞ terms are one-body operators
acting on a single hadron only, while the αn terms are two-
body operators. Here we have only kept the SU(4) (spin and
isospin) singlet two-body operator ∝ ðN†NÞ2 and neglected
the SU(4) nonsinglet operator ∝ ðN†σNÞ2 − ðN†τNÞ2
which changes sign when interchanging the spin (σ) and
isospin (τ) matrices [34]. The latter operator has an addi-
tional Oð1=N2

cÞ ∼ 0.1 suppression in its prefactor [35] with
Nc the number of colors. We also replace the nucleon
velocity by the nucleus velocity and include the correction
i∂=M in higher orders.
The relative importance of the hadronic operators of

Eq. (6) in a nuclear matrix element can be systematically
estimated from the power counting of the EFT, which
assigns a power of the small expansion parameter ϵ to each
Feynman diagram. In Weinberg’s power counting scheme
[36], the nucleon one-body operator is Oðϵ−3Þ, the nucleon
two-body operator is Oðϵ0Þ, while the pion one-body
operator connecting two nucleons is Oðϵn−1Þ. Since
hxniπ ¼ 0 for even n due to charge conjugation symmetry,
the n ¼ 1 pion operator enters atOðϵ0Þ, but for higher n the
contributions either vanish or are higher order compared
with the other operators in Eq. (6).
The same order of importance for these operators is also

found using the alternate power countings of Refs. [37–39],
but with a less suppressed two-body effect compared with
the one-body nucleon operator. Other higher-dimensional
operators are omitted here because they are higher order in
the power counting [17].
Using nucleon number conservation, hAj∶N†N∶jAi ¼ A,

the nuclear matrix element of Eq. (6) for n ≠ 1 is

hxniAðQÞ ¼ hxniNðQÞ½Aþ αnðΛ; QÞhAj∶ðN†NÞ2∶jAiΛ�;
ð7Þ

where αn is A independent but Λ dependent and is
completely determined by the two-nucleon system. After
an inverse Mellin transform, the isoscalar PDFs satisfy

qAðx;QÞ=A≃ qNðx;QÞ þ g2ðA;ΛÞ ~q2ðx;Q;ΛÞ; ð8Þ
where

g2ðA;ΛÞ ¼
1

2A
hAj∶ðN†NÞ2∶jAiΛ; ð9Þ

and ~q2ðx;Q;ΛÞ is an unknown function independent of A.
[The exception of n ¼ 1 in Eq. (7) results from the relevant
contribution of the pionic operator in that case. This implies
that the factorization is violated only for x ¼ 0 [40].] This
result also holds at the level of the structure function [17],
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FA
2 ðx;Q2Þ=A≃ FN

2 ðx;Q2Þ þ g2ðA;ΛÞf2ðx;Q2;ΛÞ: ð10Þ

The second term on the right-hand side of Eq. (10) is the
nuclear modification of the nucleon structure function FN

2 .
The shape of distortion, i.e., the x dependence of f2, which
is due to physics above the scale Λ, is A independent and
hence universal among nuclei. The magnitude of distortion,
g2, which is due to physics below the scale Λ, depends only
on A and Λ.
Linear EMC-SRC relation in EFT.—At smaller Q2, we

can generalize the analysis in the previous section to all
higher-twist terms in the operator product expansion. For a
higher-twist operator Oμ0…μn, its indices need not be
symmetric or traceless, but the matching is still similar
to Eq. (6). The only difference is that chiral symmetry
dictates that the pion one-body operator has at least two
derivatives in the chiral limit even if the operator has no
index. For example, the twist-three operatorsG2

αβ andmqq̄q
are matched to ð∂πÞ2 and m2

ππ
2 operators. Therefore, the

same power counting result holds to all orders in the twist
expansion and we have

σA=A≃ σN þ g2ðA;ΛÞσ2ðΛÞ; ð11Þ
where the dependence on E (the initial electron energy), x,
and Q2 is suppressed.
With σN vanishing for x > 1, Eqs. (2) and (11) imply

a2ðA; x > 1Þ≃ g2ðA;ΛÞ
g2ð2;ΛÞ

; ð12Þ

for both DIS and QE kinematics, yielding a plateau in a2 as
observed experimentally at 1.5 < x < 2. [Fermi motion, an
OðϵÞ effect in the EFT, extends the contribution of the single
nucleon PDF to x slightly above 1 so that the onset of the
plateau is also pushed to larger x.] Since a2ðA; xÞ is a ratio of
physical quantities, it is independent of the EFT cutoff scale
Λ. The EFTanalysis also predicts that the scale dependence
of g2ðA;ΛÞ is independent of A, as suggested in [45].
From Eqs. (1) and (10), direct computation shows that

dREMCðA; xÞ
dx

≃ CðxÞ½a2ðAÞ − 1� ð13Þ

has a linear relation with a2, with CðxÞ¼g2ð2Þ½f02FN
2 −

f2FN0
2 �=½FN

2 þg2ð2Þf2�2 independent of A and Λ (here,
f0 ¼ df=dx).
SRC scaling factor.—Short-range correlations in light

nuclei have been examined theoretically from several
points of view [18,46–51]. However, the focus of previous
studies was on the one- or two-body distribution functions
in coordinate or momentum space, which are scale and
scheme dependent [52,53].
Here we discuss their observable ratio, the SRC scaling

factor, Eq. (12). We calculate a2 using the GFMC method,
which is one of the most accurate methods for solving the

many-body Schrödinger equation for nuclei up to A ≤ 12
[54]. The GFMC method projects out the lowest-energy
state of a given Hamiltonian H from a trial wave function
jΨTi via the many-body imaginary-time Green’s function

lim
τ→∞

e−HτjΨTi → jΨ0i; ð14Þ

with τ the imaginary time and jΨ0i the exact many-body
ground state. A limitation of diffusion Monte Carlo meth-
ods is that they require local potentials in practice, while
nuclear forces derived from chiral EFT are usually non-
local. Recently, local chiral EFT interactions have been
derived up to next-to-next-leading order (N2LO) in
Weinberg power counting [55–59]. This enables us to
use the GFMC method with chiral EFT as well as
phenomenological interactions to study the scale and
scheme independence of a2.
The function g2ðA;ΛÞ of Eq. (9) can be obtained from

the isoscalar two-body distribution

ρ2;1ðA; rÞ ¼
1

4πr2
hΨ0j

XA
i<j

δðr − jri − rjjÞjΨ0i; ð15Þ

as a matrix element of a local operator,

g2ðA;ΛÞ ¼ ρ2;1ðA; r ¼ 0Þ=A: ð16Þ
In Eq. (15), ri is the position of the ith nucleon and the sum
runs over all pairs in the nucleus, so that the integral over
ρ2;1ðA; rÞ is normalized to AðA − 1Þ=2. We note that our
EFT approach is not based on the experimentally observed
np-pair dominance [60,61], but instead on the fact that, of
the two S-wave two-nucleon operators, the SU(4)-
symmetric operator, ðN†NÞ2 (counting all pairs) is dom-
inant over the SU(4)-nonsymmetric operator [suppressed

FIG. 1. Scaled two-body distribution function ρ2;1ðA; rÞ=A for
A ¼ 2, 3, 4 nuclei as a function of relative separation r for chiral
interactions at N2LO with two different cutoffs (left panel) and
for the AV18þ UIX potentials (right panel). In the left panel, the
darker (lighter) points are for R0 ¼ 1.0 fm (R0 ¼ 1.2 fm). A ¼ 2
is solved exactly. For A ¼ 3, 4 the error bars visible at small r are
GFMC statistical uncertainties. The variation of the short-
distance behavior of the distributions shows clearly their scale
and scheme dependence.
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by a factor Oð1=N2
cÞ ∼ 0.1]. Thus, we include all pairs in

Eq. (15). Nevertheless, at short internucleon separations,
we find a predominance of np pairs over pp pairs by a
factor ∼5–10 for 4He and 12C. In our GFMC calculations,
the two-body distribution function is obtained from a mixed
estimate; for details see Refs. [40,62].
Figure 1 shows the scaled two-body distribution function

ρ2;1ðA; rÞ=A for A ¼ 2, 3, 4 nuclei for chiral two- and three-
nucleon interactions at N2LO as well as for the phenom-
enological Argonne v18 (AV18) two-nucleon [63] plus the
Urbana IX (UIX) three-nucleon [64] potentials. The vary-
ing behavior of the two-body distributions at small sepa-
ration r makes clear that g2ðA;ΛÞ depends both on the
scheme and scale, where the latter is especially clear from
the cutoff dependence (R0 ¼ 1.0 fm vs R0 ¼ 1.2 fm).
Analogous to PDFs, one- and two-body distribution func-
tions depend on the renormalization scheme and scale and,
hence, are not physical quantities [53]. However, the
factorization derived in EFT shows the ratio a2 should
be scheme and scale independent.
Using Eqs. (12) and (16), a2 is obtained from the ratio

a2 ≃ lim
r→0

2ρ2;1ðA; rÞ
Aρ2;1ð2; rÞ

; ð17Þ

where we calculate the behavior at r ¼ 0 by linearly
extrapolating from the smallest two r values to zero
separation. In EFT, locality only means a shorter distance
than the resolution scale. Hence, we expect one can replace
r → 0 in Eq. (17) by smearing within r < R (a scale set by,
but not necessarily equal to, R0), and still get the same a2.
We see indeed this is the case in Fig. 2. The left two

panels show a2 for 3He and 4He calculated using the GFMC
method with the chiral N2LO interactions and for the
phenomenological AV18þ UIX potentials. The right

panel shows results extracted from VMC calculations
[65] for the AV18þ Urbana X ðUXÞ potentials for 9Be
and 12C. The red and blue bands in the left panel represent a
combined uncertainty estimate from the truncation of the
chiral expansion [66] added in quadrature to the GFMC
statistical uncertainties. The Oðϵ2Þ ∼ 0.1 corrections to the
operator are also contained within this conservative uncer-
tainty estimate. We display the band obtained for the R0 ¼
1.0 fm cutoff which encompasses the N2LO calculations
with both cutoffs (R0 ¼ 1.0, 1.2 fm). For each panel, it is
clear that a plateau in the ratio sets in at a value R depending
on the scale and scheme. Moreover, we observe from Fig. 2
that the r ¼ 0 value is a conservative estimate for a2 given
that the statistical uncertainties in the calculation of the
two-body distributions grow as we approach zero separa-
tion. As is evident from Fig. 2, the GFMC values for a2 are
in very good agreement with experiment [16] while the
preliminary VMC results are also encouraging. We sum-
marize the extracted SRC scaling factors a2 of the GFMC
calculations and the comparison with experiment in Table I.

FIG. 2. Ratio of the two-body distribution functions for 3He (blue) and 4He (red) to the two-body distribution function for the deuteron,
2ρ2;1ðA; rÞ=Aρ2;1ð2; rÞ, as a function of relative separation r. Results are shown for chiral interactions at N2LO with two different cutoffs
(left panel) and for the AV18þ UIX potentials (middle panel) calculated using the GFMC method. In the left panel, the darker (lighter)
points are for R0 ¼ 1.0 fm (R0 ¼ 1.2 fm) and the bands represent a combined uncertainty estimate from the truncation of the chiral
expansion added in quadrature to the GFMC statistical uncertainties. The right panel shows the ratio for 9Be (green) and 12C (black) for
AV18þ UX obtained from VMC results [65]. These ratios are compared to the experimental values for a2 from Ref. [16], given by the
horizontal lines.

TABLE I. Results for the SRC scaling factor a2 obtained via
Eq. (17) from GFMC calculations of A ¼ 3, 4 nuclei based on
chiral N2LO interactions (for cutoffs R0 ¼ 1.0 fm and
R0 ¼ 1.2 fm) and the AV18þ UIX potentials. The uncertainties
quoted for the N2LO interactions include the uncertainty esti-
mated from the truncation of the chiral expansion added in
quadrature to the GFMC statistical uncertainties.

N2LO (R0 ¼ 1.0–1.2 fm) AV18þ UIX Exp. [16]
3H 2.1(2)–2.3(3) 2.0(4)
3He 2.1(2)–2.1(3) 2.0(4) 2.13(4)
4He 3.8(7)–4.2(8) 3.4(3) 3.60(10)
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Summary and outlook.—We have shown that the linear
relation between the magnitude of the EMC effect at
intermediate x and the SRC scaling factor a2 is a natural
consequence of scale separation and have derived this result
using EFT.We have also computed a2 for 3He and 4He using
the GFMC method with both chiral and Argonne-Urbana
potentials to confirm the scheme and scale independence.
GFMC calculations with chiral interactions for 9Be, 12C,

and other light nuclei will allow further tests of the EFT
understanding of these phenomena. In the case of 9Be, it
would be especially interesting to confirm whether a2 is
determined by local instead of global nuclear density [67].
It would also be very insightful to complete our theoretical
understanding of the EMC-SRC relation by computing the
CðxÞ coefficient in Eq. (13) from lattice QCD calculations
of f2ðxÞ from the deuteron [68–70].
The EFT approach to the partonic structure of nuclei has

broad applicability, the isoscalar structure that we have
discussed above being just one example. For the
F3ðx;Q2Þ structure function that is accessible in weak-
current DIS, EFT predicts a relation analogous to Eq. (10)
with F2 replaced by F3, and g2 replaced by an isospin-
dependent nuclearmatrix element. The resulting analogue of
Eq. (13) is also expected to hold. The generalization to spin-
dependent parton structure and to generalized parton dis-
tributions [71] is similarly straight forward. EFT could also
shed light on whether a plateau of σA=σ3He for 2 < x < 3

exists, which is still inconclusive experimentally [10,14,72].
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