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We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to
higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of
SU(2) operators in the defect version of N ¼ 4 supersymmetric Yang-Mills theory, dual to the D5-D3
probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The
asymptotic formula correctly encodes the information about the one-loop correction to the one-point
functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by
an explicit computation involving a novel object denoted as an amputated matrix product state.
Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula
gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in
the dual string theory up to wrapping order.
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Introduction.—Apart from observables which are pro-
tected by supersymmetry, the AdS/CFT correspondence
has not provided us with many examples of quantities
which can be explicitly calculated to all orders in the
coupling constant in both the string theory and the field
theory and successfully matched. The main examples are
the cusp anomalous dimension [1] and the expectation
value of the circular Maldacena-Wilson loop [2–4]. An
instructive attempt to arrange for a situation which could
allow an all-order comparison between the gauge and string
theory was made with the invention of the Berenstein-
Maldacena-Nastase (BMN) limit, where a certain double-
scaling parameter combining the ’t Hooft coupling constant
λ with a large angular momentum quantum number was
introduced and certain observables being close to protected
were considered [5]. However, it turned out that for the
observables considered the BMN expansion became incon-
sistent starting at four-loop order in the field theory [6–8].
In a variant of the AdS/CFT correspondence which

involves a D5-D3 probe-brane setup on the string-theory
side and a codimension-one defect in the N ¼ 4 super-
symmetric Yang-Mills (SYM) theory, another double-
scaling limit has recently been proposed [9]. It consists
of sending the ’t Hooft coupling as well as a certain
background gauge field flux k to infinity while keeping a
certain ratio involving the two parameters fixed. While the
study of the BMN expansion acted as a seed for the
development of the integrability approach to the N ¼ 4
SYM theory [10], at the present stage we already have
available a vast number of integrability tools that we can
make use of when investigating the defect setup and the
associated novel double-scaling limit. In addition, in the
defect case we have an entirely new collection of observ-
ables including one-point functions, two-point functions
between operators of unequal conformal dimension, and

correlators between bulk and boundary fields [11]. In
particular, we can consider the BMN vacuum states of
the N ¼ 4 SYM theory whose two- and three-point
functions do not get quantum corrections in the pure N ¼
4 SYM theory but whose one-point functions are non-
vanishing and receive quantum corrections in the defect
theory.
One-point functions of protected operators were calcu-

lated at the tree level in the above-mentioned defect
CFT in Ref. [12] and in a closely related theory building
on a nonsupersymmetric D7-D3 probe-brane system in
Ref. [13]. Furthermore, exploiting the integrability struc-
ture of the N ¼ 4 SYM theory and introducing an
appropriate boundary state in the form of a matrix product
state, one-point functions of nonprotected operators were
calculated at the tree level for the SU(2) sector in
Refs. [14,15]. This approach was generalized to the
SU(3) sector [16] as well as to the SO(6) sector of the
above-mentioned nonsupersymmetric defect CFT [17,18].
Most recently, the one-loop correction to the one-point
function of the BMN vacuum was calculated [19,20] and
shown to match the string-theory prediction of Ref. [12]. In
addition, a strategy for computing the one-loop correction
to the one-point functions of nonprotected operators was
presented [20]. This involved the introduction of a new
object denoted as the amputated matrix product state.
In the present Letter, we will argue that the integrability

approach to one-point functions suggests a certain gener-
alization of the tree-level formula for the SU(2) sector to
higher loop orders. We shall furthermore concretely imple-
ment the above-mentioned strategy for the calculation of
one-loop corrections to one-point functions and show
that the results can be accounted for by the suggested
asymptotic formula when dressed by a simple flux-
dependent factor. This flux factor leads to a breakdown
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of the above-mentioned double-scaling limit for nonpro-
tected operators already at one-loop order. For protected
operators, the flux factor is absent, and we will show that
the proposed formula implies that the one-point function of
the BMN vacuum state has an expansion that in the double-
scaling limit, up to terms of wrapping order, matches an
expansion derived in the string-theory language using a
supergravity approximation.
Our proposal.—The defect version of the N ¼ 4 SYM

theory which is dual to the D5-D3 probe-brane system with
flux k is characterized by having a codimension-one defect,
say, at x3 ¼ 0, separating two regions of space, x3 > 0 and
x3 < 0, where the gauge group is, respectively, (broken)
UðNÞ and UðN − kÞ. The difference in the rank of the
gauge group implies assigning the following vacuum
expectation values, for x3 > 0, to three out of the six scalar
fields of the N ¼ 4 SYM theory:

hϕiitree ¼ −
1

x3
ti ⊕ 0ðN−kÞ×ðN−kÞ; i ¼ 1; 2; 3; ð1Þ

where the ti are the generators of a k-dimensional irreduc-
ible representation of SU(2). For a precise description of
the holographic setup, we refer to Ref. [20] as well as the
original papers [21,22].
As usual, we identify two complex scalars of the N ¼ 4

SYM theory with spins of an integrable SU(2) spin chain
as ↑≡ X ¼ ϕ1 þ iϕ4 and ↓≡ Y ¼ ϕ2 þ iϕ5. A Bethe
(eigen)state of this spin chain is characterized by two
Dynkin labels L and M corresponding, respectively, to the
length and the number of excitations and, in addition, byM
rapidities fuig that satisfy certain Bethe equations. For a
given eigenstate jui, we define the corresponding single-
trace operator from the SU(2) sector as

O≡
�
4π2

λ

�
L=2 Zffiffiffiffi

L
p tr

Q
L
l¼1ðh↑lj⊗Xþh↓lj⊗YÞjuiffiffiffiffiffiffiffiffiffiffiffiffihujuip : ð2Þ

Far away from the defect, the tree-level two-point function
of O is normalized to unity, and we will use the freedom in
the choice of the finite part of the renormalization constant
Z to enforce this also at the loop level. The one-point
function then takes the form

hOðxÞi ¼
�
4π2

λ

�
L=2 Ckffiffiffiffi

L
p 1

xΔ3
; ð3Þ

where Δ denotes the scaling dimension of the operator. The
calculation of Ck will be the subject of this Letter.
Tree level.—At the tree level, the one-point function can

be written as the overlap of a Bethe eigenstate of the
Heisenberg spin chain with a matrix product state [14,15].
The corresponding Bethe equations read

1 ¼
�
uk − i

2

uk þ i
2

�L YM
j¼1
j≠k

uk − uj þ i

uk − uj − i
≡ exp½iΦk�: ð4Þ

Using the algebraic Bethe ansatz approach [23], the Bethe
state can be built from the ferromagnetic vacuum j0iL with
all spins up via the creation operators BðuÞ:

jui ¼ Bðu1Þ…BðuMÞj0iL: ð5Þ
Defining the matrix product state as

hMPSj ¼ tr
YL
l¼1

ðh↑lj ⊗ t1 þ h↓lj ⊗ t2Þ; ð6Þ

the tree-level one-point function of O is given as

Ck ¼
hMPSjuiffiffiffiffiffiffiffiffiffiffiffiffihujuip : ð7Þ

In Ref. [14], it was shown that only operators with L and
M even and with paired rapidities fuig ¼ f−uig have
nontrivial one-point functions [24]. For k ¼ 2, the tree-
level one-point function can be elegantly described in terms
of the Bethe function Φ introduced above. Let us order the
roots as fu1;…; uM=2;−u1;…;−uM=2g and introduce the
following ðM=2Þ × ðM=2Þ dimensional matrices G�:

G� ¼ ∂mΦn � ∂mþðM=2ÞΦn; ð8Þ
with ∂m ≡ ð∂=∂umÞ. Then, the one-point function for
k ¼ 2 can be written as

C2 ¼ 21−L

ffiffiffiffiffiffiffiffiffiffi
Qði

2
Þ

Qð0Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
detGþ
detG−

s
; ð9Þ

where QðuÞ ¼ Q
M
i¼1ðu − uiÞ is the Baxter polynomial.

According to Ref. [15], the one-point function for k > 2
then takes the form

Ck ¼ iLTk−1ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qði

2
ÞQð0Þ

Q2ðik
2
Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
detGþ
detG−

s
; ð10Þ

where

TnðuÞ¼
Xn=2

a¼−ðn=2Þ
ðuþ iaÞL Qðuþnþ1

2
iÞQðu−nþ1

2
iÞ

Q(uþða− 1
2
Þi)Q(uþðaþ 1

2
Þi)
ð11Þ

can be identified as the transfer matrix of the Heisenberg
spin chain in the (nþ 1)-dimensional representation [25].
Quantization.—Bearing in mind the integrability

approach to the spectral problem of the N ¼ 4 SYM
theory, it is natural to introduce the coupling constant
dependence via the Zhukovsky variable x [26]:

xþ 1

x
¼ u

g
; x ¼ u

g
−
g
u
þOðg2Þ; ð12Þ

where the effective planar coupling constant g2 is related to
the ’t Hooft coupling λ ¼ Ng2YM as g2 ¼ ðλ=16π2Þ and
where the cut of the function xðuÞ is taken to be the straight
line ½−2g; 2g�. The all-loop asymptotic Bethe equations
which determine the conformal operators of the N ¼ 4
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SYM theory and their anomalous dimensions are then
given by [7]

1 ¼
�
xðuk − i

2
Þ

xðuk þ i
2
Þ
�LY

j≠k

uk − uj þ i

uk − uj − i
exp½2iθðuk; ujÞ�

≡ exp½i ~Φk�; ð13Þ
where exp½2iθðuk; ujÞ� is the so-called dressing phase. A
natural generalization of (9) is obtained by replacing the
classical Bethe function Φ by the quantum Bethe function
~Φ. Furthermore, a natural generalization of the transfer
matrix is the following one:

~TnðuÞ ¼ gL
Xn=2

a¼−ðn=2Þ
xðuþ iaÞL

×
Qðuþ nþ1

2
iÞQðu − nþ1

2
iÞ

Q(uþ ða − 1
2
Þi)Q(uþ ðaþ 1

2
Þi) : ð14Þ

This gives a natural expression for (10) at the quantum
level. Of course, the roots ui appearing in the Baxter
polynomials satisfy the all-loop Bethe equations (13). It is
not excluded that further modifications of the transfer
matrix are necessary, but for the consistency checks that
we perform the present modification suffices. Furthermore,
the phase factor in (13) does not come into play in these
checks. However, we do need to allow for a flux factor F k,
such that we find

Ck ¼ iL ~Tk−1ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qði

2
ÞQð0Þ

Q2ðik
2
Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~Gþ
det ~G−

s
F k: ð15Þ

The flux factor Fk is 1 for protected operators, and its
general form at one-loop order turns out to be

F k¼1þg2
�
Ψ
�
kþ1

2

�
þγE− log2

�
Δð1Þ þOðg4Þ; ð16Þ

where Δð1Þ ¼ 2
P

M
i¼1ð1=u2i þ 1

4
Þ is the one-loop correction

to the scaling dimension. Note that the Euler digamma
function Ψ can be reexpressed in terms of the harmonic
number H, which is generalized to noninteger arguments
via Hx ¼ Ψðxþ 1Þ þ γE.
Checks.—We now test (15)—first at one-loop order for

nonprotected operators in the SU(2) sector and then at
higher orders for the BMN vacuum. Finally, we will discuss
the flux factor and the fate of the double-scaling limit.
SU(2) at one loop.—In Ref. [20], we have shown that the

one-loop one-point function is given by the sum of three
contributions: (a) the manifestly finite overlap of the Bethe
eigenstate with a special spin-chain state, denoted as an
amputated matrix product state, (b) an ultraviolet (UV)-
divergent contribution proportional to the one-loop dilata-
tion operator, which requires operator renormalization, and
(c) the one-loop correction to the Bethe state. Demanding
that the two-point function far away from the defect
remains unit normalized also at one-loop order fixes the

renormalization constant to be Z¼1þg2ðΔð1Þ=2Þ½ð1=ϵÞþ
1þγEþlogπ�þOðg4Þ; see, for instance, Ref. [27]. The
one-loop one-point function then reads [20]

Ck¼
ðhMPSjþg2hAMPSjÞjuiffiffiffiffiffiffiffiffiffiffiffiffihujuip

×

�
1þg2

�
Ψ
�
kþ1

2

�
þγE− log2þ1

2

�
Δð1Þ

�
þOðg4Þ;

ð17Þ
where jAMPSi denotes the amputated matrix product state,
to be explicated below, and jui denotes the loop-corrected
Bethe state. In order to evaluate (17) explicitly, we need two
ingredients. We need to evaluate the overlap of hAMPSj
with the Bethe state, and we need to compute the first
correction to the Bethe state, i.e., the two-loop Bethe
eigenstate.
Overlap with hAMPSj.—The amputated matrix product

state hAMPSj is defined as [20]

hAMPSj ¼
XL
l¼1

Al;lþ1hMPSj; ð18Þ

where Ai;iþ1 removes the matrices at positions i and iþ 1

(with Lþ 1 ∼ 1) if they are identical and otherwise kills the
trace; cf. (6).
Let us consider the overlap between a Bethe state and the

amputated matrix product state. The overlap is nonzero
only for an even number of magnons M, and in the
coordinate formulation it reads

hAMPSjui ¼
X

n∈fngM
ΨBðn; fuigÞ

XL
l¼1

Al;lþ1

× tr

�YM
i¼1

ðtnðiþ1Þi−1
1 t2Þ

�
; ð19Þ

where fngM denotes the usual set of ordered magnon
positions ðn1 < � � � < nMÞ and ΨBðn; fuigÞ is the Bethe
wave function. Furthermore, the shorthand notation nij ≡
ni − nj and nMþ1 ≡ n1 þ L is used throughout.
For any evenM and k ¼ 2, one can compute directly the

action of
P

Al;lþ1 on the traces in (19):

XL
l¼1

Al;lþ1tr
YM
i¼1

ðtnðiþ1Þi−1
1 t2Þ

¼k¼2ð−1ÞðM=2Þþ
P

i
ni23−L

�
Lþ 2

XM
i¼1

ðδnðiþ1Þi¼1 − 1Þ
�
: ð20Þ

Using this, the rest of the computation can be carried out
symbolically by brute force in Mathematica, at least for
smaller values ofM. This was done forM ¼ 2, 4 and leads
to the conjecture

hAMPSjui ¼k¼2ð4L − Δð1ÞÞhMPSjui; ð21Þ
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which was subsequently tested numerically up to and
including M ¼ 6 and L ¼ 16. A closed formula for
M ¼ 2 and any k can likewise be obtained.
Two-loop Bethe states.—The first loop correction to the

Bethe state, i.e., the two-loop Bethe state, can be generated
via the so-calledΘmorphism [28]. To this end, we consider
the Heisenberg spin chain with impurities θi. The one-loop
Bethe state can again be constructed using the algebraic
Bethe ansatz approach:

jθ;ui ¼ B̂ðu1Þ…B̂ðuMÞj0iL; ð22Þ
where the B̂ operator is

B̂ðuÞ ¼ h↑j ⊗L
j¼1

�
1j;0 þ

i
u − θj − i

2

Pj;0

�
j↓i: ð23Þ

The two-loop eigenstate is then

jui≡
�
1 − g2

Δð1Þ

2
HL;1

�
fjθ;uigΘ; ð24Þ

where Hj;jþ1 ¼ 1j;jþ1 − Pj;jþ1 is the Heisenberg spin-
chain Hamiltonian density. The Θ morphism fgΘ is
defined via

ffgΘ ≡ f þ g2

2

XL
i¼1

� ∂
∂θi −

∂
∂θiþ1

�
2

f þOðg4Þ
				
θj→0

: ð25Þ

The rapidities fuig have to satisfy the two-loop Bethe
equations (13). For instance, the easiest case is M ¼ 2,
k ¼ 2, where we find for the overlap with the matrix
product state

hMPSjuiffiffiffiffiffiffiffiffiffiffiffiffihujuip ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

L − 1

u2 þ 1
4

u2
1þ g2 4

u2þð1=4Þ

1þ g2

L−1
6u2−1

2

½u2þð1=4Þ�2

vuuut : ð26Þ

A closed expression for M ¼ 2 and any k can similarly be
derived.
General formula.—Now that we have all the ingredients,

we are ready to check if (15) reproduces (17). Indeed, one
can analytically show that for M ¼ 2 both formulas agree.
Moreover, we numerically compared (15) and (17) for
L ¼ 8 and M ¼ 4 excitations for various values of k and
again found perfect agreement.
BMN vacuum at all loop orders.—A particularly simple

situation arises if we consider the spin-chain vacuum,
which corresponds to the protected operator trðXLÞ.
For the vacuum, there are no Bethe roots, and our

proposal (10) reduces to

Ck ¼ iLTk−1ð0Þ ¼
Xðk−1Þ=2

a¼ð1−kÞ=2
½igxðiaÞ�L; ð27Þ

i.e., the only contribution stems from the transfer matrix for
the vacuum. We notice, in particular, that the contribution
from the flux factor trivializes.

For even k and even L, the one-point function formula
can be readily expanded as a power series in g with the
result (up to the order of g2L, the result is identical for
odd k)

CkðgÞ ¼ 2
XL=2
n¼0

�
L − n
n

�
L

L − n

BL−2nþ1ð1þk
2
Þ

L − 2nþ 1
g2n

þ g2L
X∞
n¼0

L½ΨðLþ2n−1Þð1þk
2
Þ −ΨðLþ2n−1Þð1−k

2
Þ�

ð−1Þnn!ðLþ nÞ! g2n;

ð28Þ
where Bn is the Bernoulli polynomial with index n andΨðnÞ
is the polygamma function. We notice that the term
occurring in the second line of (28) starts contributing
only at wrapping order. For even k and odd L, the one-point
function vanishes as xðuÞ is an odd function (away from the
cut). At the one-loop level, we find that (28) exactly agrees
with Ref. [20]. For odd k, the contribution from a ¼ 0 in
(27) should be understood in the following way:

½gxðiaÞ�Lja¼0 ≡ ½gxðþ0iÞ�L þ ½gxð−0iÞ�L: ð29Þ
This prescription can be motivated by the fact that it leads
to the correct result for htrX2i at one-loop order for odd k
and in addition ensures that the one-point function vanishes
for odd L, also when k is odd.
String theory.—We can compare this result to a string-

theory prediction in the double-scaling limit proposed in
Ref. [9]. This limit consists in taking

λ → ∞; k → ∞;
λ

k2
fixed and small; ð30Þ

on top of the planar limit. In Ref. [12], the one-point
function of a specific SOð3Þ × SOð3Þ-invariant chiral
primary was calculated by a variant of the Witten pre-
scription, in particular, implying a supergravity approxi-
mation, which is justified here due to the assumption of
λ → ∞. As explained in Ref. [20], the result of this
computation can be turned into a prediction for the one-
point function we are considering divided by its tree-
level value.
The prediction from the string theory reads

CkðgÞ
Ckð0Þ

				
st
¼ ΓðLþ 1

2
Þ

κLþ1
ffiffiffi
π

p
ΓðLÞ ½κ

2 þ 1�3=2

×
Z

π=2

− arctan κ
dθ cos2L−1θðκ þ tan θÞL−2: ð31Þ

The leading two terms of the integral above in the large
κ ¼ ðπk= ffiffiffi

λ
p Þ expansion were already given in Ref. [12],

and we can even evaluate the integral exactly to get

CkðgÞ
Ckð0Þ

				
st
¼ ðκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
ÞLðL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
− κÞ

2LðL − 1ÞκLþ1
: ð32Þ

Comparison.—Let us ignore the second line of (28),
which as mentioned above starts contributing only at
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wrapping order. In the large-k limit, we have
Bnð1þ k=2Þ → ðk=2Þn, and the first line of (28) organizes
itself as a power series in ðg=kÞ2:

CkðgÞ
Ckð0Þ

				
gt
→ 1þ

XL=2
n¼1

�
L − n
n − 1

�
L
n
Lþ 1

L − n

�
2g
k

�
2n

þOðg2LÞ; as k → ∞: ð33Þ
Remarkably, this agrees with the string-theory prediction
up to wrapping order after identifying κ ¼ ðk=4gÞ ¼
ðπk= ffiffiffi

λ
p Þ. The terms in the second line of (28) have a

scaling behavior in k which violates the double-scaling
limit. It is tempting to attribute these terms to wrapping
interactions.
Flux factor.—The flux factor in our proposal (15) has no

counterpart at the tree level and depends on the anomalous
scaling dimension Δ − L such that it vanishes for protected
operators.
At one-loop order, the corresponding contribution in (17)

has been calculated in Ref. [20]. It is the finite part of the
UV-divergent integral whose UV divergence is subtracted
by the renormalization constant and yields the one-loop
scaling dimension Δð1Þ. Since UV divergences exponen-
tiate, it is possible that the flux factor exponentiates as well,
and the following form of the higher loop flux factor seems
natural:

F k ¼ 2L−Δ exp

�
ðΔ − LÞ

�
Ψ
�
kþ 1

2

�
þ γE

��
: ð34Þ

A direct field-theoretic check of (34) at two-loop order
would clearly be desirable, though very demanding.
An independent consequence of the flux factor is that it

leads to a breakdown of the double-scaling limit for
nonprotected operators starting already at one-loop order.
As an example, let us consider the Konishi operator, which
has L ¼ 4, M ¼ 2, and u1 ¼ −u2 ¼ ð1=2 ffiffiffi

3
p Þ þOðg2Þ.

Its one-loop one-point function can be explicitly worked
out to be

Ck¼
kðk2−1Þ
12

ffiffiffi
3

p
�
1þ12g2

�
Ψ
�
kþ1

2

�
þγE− log2þ5

6

��
;

ð35Þ
where we used that Δð1Þ ¼ 12. Since Ψðkþ 1=2Þ ∼ log k
for large k, the perturbative expansion in the double-scaling
limit does not arrange itself in powers of ðλ=k2Þ.
Conclusions and outlook.—We have argued that the

recently derived, integrability-based formula for tree-level
one-point functions in the SU(2) sector of a specific
defect version of the N ¼ 4 SYM theory points towards
a natural higher-loop generalization. The generalization is
based on an idea which worked successfully for the spectral
problem of the N ¼ 4 SYM theory and which consists of
introducing the coupling constant via a Zhukovski trans-
formation of the Bethe roots characterizing the conformal

operators. More precisely, the Zhukovski variables should
replace the Bethe roots in both the Bethe equations and the
transfer matrix of the system, and the Bethe equations
should be equipped with the usual phase factor of the
N ¼ 4 SYM theory. Furthermore, in the present case, an
additional flux factor contributing to the higher-loop one-
point function formula is needed.
We have performed a number of nontrivial consistency

checks of the generalized one-point function formula, and
these have come out positive. First, we have compared the
higher-loop one-point function formula to an honest field-
theory calculation of the one-loop one-point function of
nonprotected operators in the SU(2) sector. This calculation
is technically demanding, involving the evaluation of the
overlap of an uncorrected Bethe eigenstate and a so-called
amputated matrix product state as well as the overlap
between a loop-corrected Bethe eigenstate and an uncor-
rected matrix product state [20]. Results can be obtained
analytically for BMN operators with two excitations,
whereas for more complicated operators one has to resort
to numerical computations. For all cases tested, the field-
theory computation agreed with the proposed higher-loop
formula. As a second test, we have carried out an analysis
of the higher-loop formula when applied to the BMN
vacuum state trðXLÞ. For this state, the one-point function
consists of two contributions: one which comes into play
only at wrapping order and one for which it is possible to
impose the double-scaling limit, proposed in Ref. [9], and
obtain a power series expansion in the double-scaling
parameter. This power series expansion can be compared
to a similar expansion obtained by a string-theory analysis
using a supergravity approximation, and agreement is
found up to wrapping order for any length L of the
BMN vacuum state. These two consistency checks con-
stitute a strong indication that we are on the right track
when trying to move towards higher loop orders.
The flux factor we propose depends on the anomalous

dimension of the operator considered and leads to a
breakdown of the double-scaling limit in the case of
nonprotected operators starting already at one-loop order.
While the exponentiation of the flux factor is certainly
natural from the one-loop point of view, an explicit field-
theoretic check at two-loop order is clearly required.
The presented higher-loop one-point function formula is

expected to be only an asymptotic formula, in the sense that
we expect there to be further corrections from wrapping
interactions as was the case for the N ¼ 4 SYM theory
[29,30]. It would be very interesting to investigate the
possible wrapping corrections in the present defect CFT or
to study the theory using the thermodynamical Bethe ansatz
approach to clarify whether the second line of (28) can
indeed be understood as wrapping terms.
It would likewise be interesting to investigate whether

the integrability approach can be used to infer some
properties of the higher-loop contributions to other observ-
ables in the present defect CFT such as Wilson loops
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[9,31,32] or less-studied objects such as two-point func-
tions of operators of unequal conformal dimension [33].
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