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A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a
pair of test “quarks” initially in a color singlet generically acquire net color as a result of the flux. A
nonlinear formula is derived for the relative color rotation of the quarks. For a weak color flux, the formula
linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills
analog of the gravitational memory effect.

DOI: 10.1103/PhysRevLett.119.261602

Introduction.—The gravitational memory effect in gen-
eral relativity [1–3] concerns a subtle and beautiful aspect
of the behavior of inertial detectors in the weak field region
far from gravitating sources. It is a key observational link
interconnecting asymptotic symmetries and soft theorems
[4]. In this Letter, we derive the analog of this effect in
classical non-Abelian gauge theory. The memory effect in
Abelian gauge theory was discussed in Refs. [5–7].
The color memory effect can be seen by two test

“quarks” in a color singlet stationed at a fixed large radius
near future null infinity Iþ and fixed angles Θα, where the
label α ¼ 1, 2 distinguishes the two quarks. In order for the
statement that they are in a color singlet to have any
meaning, we must specify a flat connection A ¼ iUdU−1

on Iþ. Here U is an element in the gauge group G. For
simplicity, we take the initial value at retarded time ui to be

UðuiÞ ¼ 1; ð1Þ

although the generalization is straightforward. Now con-
sider the effect of color flux or radiation through Iþ, which
we take to begin after the initial time ui and end before
some final time uf. Over this time interval, while the
position of each quark is pinned to a fixed radius and angle,
the color of each quark Qα evolves according to

∂uQα ¼ iAuðΘαÞQα; ð2Þ

where Au denotes a component of the gauge field near Iþ.
It is convenient to use the temporal gauge

Au ¼ 0; ð3Þ

so that the quarks do not change their colors.
By assumption, at late times u > uf the field strength

vanishes and the connection is again flat. However, we will
see that the classical constraint equation on Iþ implies that
generically

UðufÞ ≠ 1: ð4Þ

This is color memory: The connection “remembers” some
aspects of the color flux. This means that our two initially
color-singlet quarks will no longer be in a color singlet after
the passage of the color flux. Parallel transport from Θ1 to
Θ2 to compare their colors will reveal a relative color
rotation between the quarks:

Uðuf;Θ2ÞU−1ðuf;Θ1Þ: ð5Þ

This conclusion does not depend on the temporal gauge
choice. The main result of this Letter is a nonlinear formula
for UðufÞ in terms of the color flux through Iþ.
Classical vacua in non-Abelian gauge theory are degen-

erate and labeled by the flat connections on the “celestial
sphere” at Iþ [8]. These vacua are related by the action of
spontaneously broken “large” gauge symmetries that do not
die off at infinity. The color flux through Iþ is a domain wall
which induces transitions between the degenerate vacua. The
colormemory effectmeasures these transitions. If the celestial
sphere is initially tiled with test quarks pointing in the same
direction in color space, after thepassageof the color flux they
will point in different directions uponparallel transport by (5).
This enables one to read off the difference between the initial
and final flat connections.
Gravity and Abelian gauge theory essentially become free

theories at Iþ. In these cases, the memory effect is a linear
function of the appropriate flux at Iþ and is given by the
Fourier transform of the soft theorem. This is not the
case for non-Abelian gauge theory, for which nonlinear
effects, albeit in a substantially weakened form, persist all
the way to the boundary of Minkowski space. Finding the
finite classical memory effect requires solving an interesting
nonlinear partial differential equation (PDE) on the sphere.
We present and solve this equation to the first two orders in
weak field perturbation theory, with the first order given by
the Fourier-transformed soft gluon theorem. (It would be
interesting to either find closed form solutions or prove that
they exist.) Interestingly, the full nonlinear PDE has
appeared previously in the QCD literature. See, for example,
the work of McLerran and collaborators [9], who were
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studying gluon distribution functions inside hadrons at small
Bjorken scale x. This suggests that the color memory effect
has already been encountered in some form, just not called
by that name or related to the vacuum degeneracy of flat
connections. This relation merits further investigation.
Efforts to measure the gravitational memory effect are

underway at LIGO [10] and the pulsar timing array [11,12].
The measurement of SUð3Þ color memory is of course
difficult because of confinement. The measurement must
take place on an energy scale above the confinement scale
yet below that of the dynamical process. Indeed, as the
basic equation of color memory has been previously
encountered [9], color memory may already have been
measured. A promising context for experimental applica-
tions of color memory is the color-glass condensate
reviewed in Ref. [13]. Such applications are outside the
scope of the present work and left to future studies.
Preliminaries.—In this section, we present notations,

conventions, and an asymptotic expansion of the field
equations.
We consider a non-Abelian gauge theory with gauge

group G and elements gR in representation R. Hermitian
generators Ta

R in the representation R obey

½Ta
R; T

b
R� ¼ ifabcTc

R; ð6Þ

where the a runs over the dimension of the group and the
sum over repeated indices is implied. We denote the four-
dimensional gauge potential Aμ ¼ Aa

μTa
R with spacetime

index μ ¼ 0, 1, 2, 3.
Since we will be interested in the asymptotic expansions

of fields near future null infinity (Iþ), it is convenient to
introduce retarded coordinates in which the Minkowski
metric reads

ds2 ¼ −du2 − 2dudrþ 2r2γzz̄dzdz̄; ð7Þ

where ðz; z̄Þ are stereographic coordinates on the celestial
sphere with γzz̄ ¼ ½2=ð1þ zz̄Þ2� the unit round metric. The
equations of motion are

∇νF νμ − i½Aν;F νμ� ¼ g2YMj
M
μ ; ð8Þ

where jMμ is the matter color current, gYM is the gauge
coupling, and the field strength is

F μν ¼ ∂μAν − ∂νAμ − i½Aμ;Aν�: ð9Þ

The theory is invariant under the gauge transformations

Aμ → gRAμg−1R þ igR∂μg−1R ; jMμ → gRjMμ g−1R : ð10Þ

Working in temporal gauge (3), we expand the remaining
components of the gauge field near Iþ in inverse powers
of r [14]:

Arðu; r; z; z̄Þ ¼
1

r2
Arðu; z; z̄Þ þOðr−3Þ;

Azðu; r; z; z̄Þ ¼ Azðu; z; z̄Þ þOðr−1Þ: ð11Þ

These falloff conditions ensure finite charge and energy
flux through Iþ, and they are preserved by large gauge
transformations that approach ðz; z̄Þ-dependent Lie group-
valued functions on the celestial sphere [8,15]. The leading
behavior of the field strength is then

F ur ¼
1

r2
Fur þOðr−3Þ; F uz ¼ Fuz þOðr−1Þ;

F zz̄ ¼ Fzz̄ þOðr−1Þ; ð12Þ

where

Fur¼∂uAr; Fuz¼∂uAz; Fzz̄¼∂zAz̄−∂ z̄Az− i½Az;Az̄�:
ð13Þ

In retarded coordinates, the u component of (8) reads

∇rF ru þ∇AFAu − ið½Ar;F ru� þ ½AA;FAu�Þ ¼ g2YMj
M
u ;

ð14Þ

where here and hereafter A; B;… run over the S2 coor-
dinates ðz; z̄Þ. At leading order in the large-r expansion, we
find

−∂uFru þDAFAu ¼ Ju; ð15Þ

where DA is the covariant derivative on the unit S2 and its
indices are raised and lowered with γAB. The asymptotic
color flux is

Ju ¼ iγAB½AB; FAu� þ g2YM lim
r→∞

½r2jMu �: ð16Þ

This includes a quadratic term from the gauge potential
itself, as gluons contribute to the color flux. Note that the
left-hand side of (15) is linear in the gauge potential.
Color memory effect.—We wish to compute the change

in the vacuum, or flat connection, induced by color flux
Ju through Iþ. For simplicity, we consider configura-
tions with no color flux or magnetic fields prior to some
initial retarded time ui and after some final retarded
time uf:

Fzz̄ju<ui ¼ Fuzju<ui ¼ Fzz̄ju>uf ¼ Fuzju>uf ¼ 0; ð17Þ

and where the Coulombic component of the field
strength is constant over the sphere at initial and final
times:

Fruðui;z; z̄Þ¼FruðuiÞ; Fruðuf;z;z̄Þ¼FruðufÞ: ð18Þ
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The leading component of Fzz̄, unlike those of Fru or
Fuz, does not linearize at Iþ. This is the source of the
nonlinearity of color memory. In this case, (8) deter-
mines Azju>uf in terms of the color flux Ju, Azju<ui , and
the initial and final electric fields Fruju<ui and Fruju>uf

(which may be set to zero in some applications). By
(17), the transverse components of the boundary gauge
fields are pure gauge and hence related by a large gauge
transformation. The large gauge transformation deter-
mining the change in Az across Iþ can be found by
solving (15) subject to the boundary conditions (17).
We now determine the change of Az across Iþ.

Integrating (15) over u, we find

−DAΔAA ¼
Z

uf

ui

duJu þ ΔFru; ð19Þ

where

ΔAz¼Azðuf;z;z̄Þ−Azðui;z;z̄Þ; ΔFru¼FruðufÞ−FruðuiÞ:
ð20Þ

Let us set AAðuiÞ ¼ 0 by performing a large gauge trans-
formation and define

Jzz̄ ¼ −γzz̄
�Z

uf

ui

duJu þ ΔFru

�
: ð21Þ

Then, (19) reduces to

∂zAz̄ðufÞ þ ∂ z̄AzðufÞ ¼ Jzz̄: ð22Þ

The general solution to the boundary conditions (17) is

AzðufÞ ¼ iU∂zU−1; ð23Þ

where U ¼ Uðz; z̄Þ ∈ G. Substituting this solution in (22),
we obtain an equation for the large gauge transformation U
relating initial and final flat connections on S2:

i∂zðU∂ z̄U−1Þ þ i∂ z̄ðU∂zU−1Þ ¼ Jzz̄: ð24Þ

The color memory effect is defined by the solution to this
equation. Uðz; z̄Þ determines the flat connection on S2 after
the color flux passes through Iþ.
To solve this equation perturbatively in Jzz̄, we first

invert (23):

Uðz; z̄Þ ¼ P
�
exp

�
i
Z ðz;z̄Þ

ð0;0Þ
dwAw þ dw̄Aw̄

��
; ð25Þ

where P denotes path ordering. Uðz; z̄Þ is independent of
the path, because A is flat. Then, since the asymptotic
gauge potential AðufÞ is a 1-form on S2, it can be para-
metrized as

AzðufÞ ¼ ∂zðαþ iβÞ; Az̄ðufÞ ¼ ∂ z̄ðα − iβÞ; ð26Þ

where α and β are Lie algebra-valued real functions on S2.
Substituting into (22), we find

2∂z∂ z̄α ¼ Jzz̄; ð27Þ
which is solved by

αðzÞ ¼ 1

4π

Z
d2wGðz; wÞJww̄;

Gðz; wÞ ¼ log
jz − wj2

ð1þ zz̄Þð1þ ww̄Þ : ð28Þ

The boundary conditions (17) give an additional differ-
ential equation for β:

2∂z∂ z̄β þ ½∂zα; ∂ z̄α� þ ½∂zβ; ∂ z̄β� − i½∂zα; ∂ z̄β�
þ i½∂zβ; ∂ z̄α� ¼ 0: ð29Þ

This equation can be solved perturbatively in Jzz̄ for β,
which is given to leading order by

βðzÞ ¼ −
1

ð4πÞ3
Z

d2wd2w0d2w00Gðz; wÞ∂wGðw;w0Þ

× ∂w̄Gðw;w00Þ½Jw0w̄0 ; Jw00w̄00 � þOðJ3Þ: ð30Þ
To this order in perturbation theory, the expression for

the gauge field is

Az ¼
Z

d2w
4π

∂zGðz; wÞ
�
Jww̄ − i

Z
d2w0

4π

d2w00

4π
∂wGðw;w0Þ∂w̄Gðw;w00Þ½Jw0w̄0 ; Jw00w̄00 �

�
þOðJ3Þ;

Az̄ ¼
Z

d2w
4π

∂ z̄Gðz; wÞ
�
Jww̄ þ i

Z
d2w0

4π

d2w00

4π
∂wGðw;w0Þ∂w̄Gðw; w00Þ½Jw0w̄0 ; Jw00w̄00 �

�
þOðJ3Þ; ð31Þ

from which the large gauge transformation associated to the vacuum transition can be directly obtained via (25). It may be
seen that the first term is the Fourier transform of the soft gluon theorem, while the second is the leading nonlinear
correction for a finite color flux.
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