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We study the fully nonlinear time evolution of a holographic system possessing a first order phase
transition. The initial state is chosen in the spinodal region of the phase diagram, and it includes an
inhomogeneous perturbation in one of the field theory directions. The final state of the time evolution
shows a clear phase separation in the form of domain formation. The results indicate the existence of a very
rich class of inhomogeneous black hole solutions.
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Introduction.—The concept of a phase transition is inher-
ently an equilibrium one, and it is a theoretical challenge to
formulate a framework in which it can be quantitatively
studied in cases involving real time dynamics. Such a
framework is offered by gauge-gravity duality, which was
put forward about 20 years ago [1]. Gauge-gravity duality,
also referred to as holography, is immanently related to field
theory systems at strong coupling, and thus it is very useful to
study nonperturbative physics—especially as, within this
framework, one can work directly in the Minkowski sig-
nature and study real time dynamics. Recently, it has been
demonstrated that well-known holographic first order phase
transitions [2] are accompanied by an unstable spinodal
region [3,4], in accordance with standard predictions [5].
The analysis was based on linear response theory; however,
the true power of the dual gravitational approach is the
possibility of investigating the fully nonlinear dynamic
evolution of the system. Simultaneously with this Letter,
this particular direction was recently undertaken in Ref. [6],
where the spinodal region was studied in the holographic
model of a phase transition. The final state of the time
evolution was an inhomogeneous configuration approached
at late times within the hydrodynamic approximation.
A different setup of a homogeneous evolution was under-
taken in Ref. [7]. Inhomogeneous, static configurations
appearing in the context of a holographic first order phase
transition were also recently studied in Ref. [8].
A natural question which arises is whether the final state

will exhibit domains of the two coexisting phases with the
same values of the free energy. The main result of this
Letter is to demonstrate for the first time that, in the case of
a three-dimensional nonconformal system with a holo-
graphic dual, such a phase separation will arise dynami-
cally through a real time evolution from a perturbation in
the spinodal region. The respective energy densities of the
two components of the final state are very close to the
corresponding energy densities determined at the critical
temperature. This implies that the system undergoes a

dynamical transition during which different regions of
space become occupied with different phases of matter.
The holographic framework.—The holographic model

we use is a bottom-up construction containing Einstein
gravity coupled to a real, self-interacting scalar field. The
action takes the standard form

S ¼ 1

2κ24

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
þ SGH þ Sct;
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where κ4 is related to the four-dimensional Newton’s
constant κ4 ¼

ffiffiffiffiffiffiffiffiffiffiffi
8πG4

p
and the self-interaction potential

VðϕÞ is given below. We include the boundary terms in
the form of Gibbons-Hawking SGH [9] and holographic
counterterms Sct [10,11] contributions. We chose to work in
(3þ 1)-dimensional bulk spacetime, which is dual to
(2þ 1)-dimensional field theory, for the absence of con-
formal anomaly in odd dimensions. This, in turn, makes the
expansions near the conformal boundary free from loga-
rithms, which allows for the usage of Chebyshev spectral
methods for numerical integration. The VðϕÞ potential is
constructed so that the dual field theory undergoes an
equilibrium first order phase transition. The specific choice
that we use is

VðϕÞ ¼ −6 cosh
�

ϕffiffiffi
3

p
�
þ b4ϕ4; ð2Þ

where b4 ¼ −0.2. This functional form is dual to a relevant
deformation of the boundary conformal field theory with an
operator of conformal dimension Δ ¼ 2. When b4 ¼ 0 the
potential is that of N ¼ 2 supergravity in D ¼ 4 after
dimensional reduction from D ¼ 11 [12]. The physical
scale, breaking conformal invariance, is set by the source of
the operator and is chosen to be Λ ¼ 1. The equilibrium
structure of this model is described in terms of dual black
hole geometries characterized by specifying the horizon
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value of the scalar field, i.e., ϕðz ¼ 1Þ ¼ ϕH. The entropy
and the free energy of the system are, in turn, given by the
Bekenstein-Hawking formula and the on-shell value of the
action (1), respectively. The corresponding thermodynam-
ics reveals the appearance of a first order phase transition
between different branches of black hole geometries as
determined by the difference of the free energies. The order
of the transition is established by a discontinuity of the first
derivative of the free energy of the system. This effect is
illustrated in the lower panel of Fig. 1. The value of
the critical temperature is Tc ≃ 0.246 (in Λ ¼ 1 units). This
transition is of a similar nature as the Hawking-Page
transition in the case of anti–de Sitter (AdS) space
[13,14] (an important difference, however, is that, in the
current setup, all phases are of the black hole type). The
equation of state (EOS) is displayed in the upper panel of
Fig. 1 as a temperature dependence of the energy density.
This EOS is similar to the five-dimensional gravity theory
minimally coupled to a scalar field studied in Ref. [3,4],
and the detailed analysis of the linearized dynamics proved,
in accordance with the general lore, the existence of a
spinodal region separating stable configurations [3,4].

Time dependent configurations.—To study the time
evolution of the system, we adopt the following metric
ansatz in the Eddington-Finkelstein (EF) coordinates:

ds2 ¼ −Adt2 −
2dtdz
z2

− 2Bdtdxþ S2ðGdx2 þ G−1dy2Þ;
ð3Þ

where all functions are x, t, and z dependent. We can take
the initial state to lie in the spinodal region of the phase
diagram and add an x-dependent perturbation to the S
function. By the proper choice of the perturbing function,

δSðt; x; zÞ ¼ S0z2ð1 − zÞ3 cos ðkxÞ; ð4Þ
we can turn on a particular unstable mode or add a mixture
of all modes,

δSðt; x; zÞ ¼ S0z2ð1 − zÞ3 exp ½−w0 cos ð~kxÞ2�; ð5Þ
with different widths. By solving the time dependent
Einstein-matter equations of motion with proper AdS
boundary conditions at z ¼ 0, we determine the nonlinear
evolution of the system. [In the EF coordinates,
A ∼ 1=z2 þOð1Þ, S ∼ 1=zþOð1Þ, G ∼OðzÞ, and B ∼
OðzÞ for z → 0.] Using the procedure of holographic
renormalization, we then read off the relevant observables
like the energy density of the boundary theory from
subleading terms in the near-boundary expansion [10,11].
The system is essentially studied in the microcanonical

ensemble as the total energy density of the system is fixed
throughout the evolution. The gravitational formulation of
the problem is now given by a coupled set of nonlinear
partial differential equations. We solve that problem
numerically using the characteristic formulation of general
relativity [15] along with spectral methods [16]. In the
relevant spatial direction, we use periodic boundary con-
ditions with spectral Fourier discretization. The remaining
spatial direction is uncompactified.
Results.—Since, for this system, the energy density in

equilibrium uniquely determines the temperature, we may
deduce that the final state of evolution starting from the
unstable spinodal branch necessarily has to be inhomo-
geneous. The physical expectation that the final state will
consist of well separated phases at the phase transition
temperature T ¼ Tc would manifest itself in the existence
of spatial domains characterized by very flat energy
density, the values of which should coincide with the
energy densities of the two stable phases at T ¼ Tc.
The fact that such a configuration is attained dynamically
even when starting from points on the spinodal branch with
temperatures differing from Tc is far from trivial. That is the
main result of this Letter.
To illustrate the effect of the appearance of different

phases during the time evolution, we run the simulations for
a number of initial configurations, covering a representative
region of interest. Some of the configurations are marked
with orange dots in Fig. 1. As was explained in the previous

FIG. 1. (Upper panel) The temperature dependence of the
holographic energy density. The vertical green line represents
the transition temperature. Orange points represent sample
chosen initial configurations for the time evolution. The hori-
zontal lines show the domain energies in the final state (solid,
cosine perturbation; dashed, Gauss perturbation). (Lower panel)
Free energy as a function of temperature.
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section, we use two different shapes of perturbing function
given in Eqs. (4) and (5) with different values for
parameters. Particularly transparent results appear for the
value of the momentum equal to k ¼ 1=6 and ~k ¼ 1=12,
with w0 ¼ 10, and we have chosen to present those in this
Letter. The amplitudes of the perturbations are in the
range S0 ¼ 0.1–0.5.
The first point of interest is a large black hole configu-

ration with a temperature below Tc, but still on the stable
branch, e.g., with ϕH ¼ 1. The linear analysis shows no
instability of that configuration. However, one could still
expect a nonlinear instability due to overcooling. In our
simulations we found, however, no evidence of that within
the considered framework.
The second considered point, withϕH ¼ 2, is placed deep

in the unstable region. The temporal and spatial dependence
of the energy density is shown in the upper panel of Fig. 2.
The initially small Gaussian perturbation grows with time,
and after around 400 units of simulation time starts settling
down to an inhomogeneous final state. Themaximumand the
minimum energy of this state, marked as horizontal solid

lines in Fig. 1, approach to less than 1% the energy densities
determined by the transition temperature. Pronounced flat
regions of constant energy density are apparent at late stages
of the evolution. It is clearly visible that in the final state
different parts of the system are occupied by the different
phases, joined by a domain wall.
The third considered configuration, with ϕH ¼ 3, lies

close to the end of the spinodal region. The time depend-
ence of the energy density in this case is displayed in the
lower panel of Fig. 2. The perturbation added is a single
cosine mode. In this case, after about 150 units of
simulation time, the configuration settles down to an
inhomogeneous final state. The maximum and minimum
energy densities of this final state are marked with
horizontal dashed lines in Fig. 1. Similarly to the previous
configuration, the extrema of energy density reach the
corresponding densities determined at the transition tem-
perature T ¼ Tc. However, due to the fact that the initial
energy density is smaller than the energy density of a
configuration with ϕH ¼ 2, we observe a smaller region of
the high-energy phase in the final state.
To summarize the above results, we display the final state

energy density as a function of x in Fig. 3 for both unstable
initial configurations. The Hawking temperature of the final
state geometry is constant and equal to the critical temper-
ature Tc. From the field theory perspective, this is a clear
demonstration of the coexistence phenomenon, where an
inhomogeneous state has a constant temperature. Different
regions of space are occupied by different phases connected
by domain walls. Despite the fact that, in both cases, the
final state is rather universal, the time evolution is sub-
stantially different. The great novelty of our approach is
that details of dynamical formation of domains of different
phases can be studied quantitatively. In order to do so, it is
convenient to introduce the following observable:

Aϵ ¼
1

12π

Z
ϵ>ϵ0

ϵðt; xÞdx; ð6Þ

FIG. 2. The energy density as a function of time for the initial
configuration in the spinodal region. (Upper panel) ϕH ¼ 2,
Gaussian perturbation. (Lower panel)ϕH ¼ 3, cosine perturbation.

FIG. 3. The final state energy density for different initial
configurations: ϕH ¼ 2 (the red line) and ϕH ¼ 3 (the blue line).
The horizontal green lines represent the energy densities at the
critical temperature in isotropic solutions.
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where ϵ0 is the mean energy of the system at t ¼ t0.
The above quantity essentially measures the amount of
energy above the mean energy stored in the system at
t ¼ t0. As is clearly seen in Fig. 4, in both considered cases
the details of dynamics are different. (These differences
stem from the different forms of the perturbation employed
by us at ϕH ¼ 2 and ϕH ¼ 3.) For the configuration with
ϕH ¼ 2 the initial perturbation develops into two bubbles
which subsequently move away from the center and then
violently coalesce and merge into one final domain. For this
reason, the final state is approached with large, damped
oscillations. By contrast, the configuration with ϕH ¼ 3
displays less violent evolution. We can identify three stages
of evolution in that case. First is an exponential growth of
the instability that takes place roughly until the maximum
energy reaches the equilibrium energy density. The second
stage displays a linear increase of the bubbles’ width with a
fixed height to form an extended region. The system finally
saturates in the third stage, with small oscillations for late
times. In both cases the complicated dynamics is a
consequence of the nonlinear nature of dual Einstein
equations, and it would be extremely difficult to study
using conventional field theory techniques. In future work
we intend to analyze in more detail both of these

phenomena: the collision of fully formed domains of
equilibrium phases and the details of the dynamics of
bubble growth.
Discussion.—In this Letter we demonstrated for the first

time the existence of a phase separation effect at the
transition temperature of a first order phase transition in
the context of holographic models. The chosen setup was a
bottom-up holographic construction designed to exhibit an
equilibrium first order phase transition.
The full nonlinear time evolution of a perturbed con-

figuration with a spinodal instability ended in an inhomo-
geneous state composed of domains of different stable
phases as determined at the transition temperature fixed
by the equality of free energies. The dual gravitational
configuration is a black hole with an inhomogeneous
horizon. However, in contrast to the results of Ref. [6],
the geometries obtained here correspond to domains of
specific thermodynamic phases with very mild spatial
dependence separated by relatively narrow domain walls.
On the gravitational side, this means that the bulk geometry
consists of two distinct types of black holes, characterized,
e.g., by the value of the scalar field on the horizon smoothly
connected by interpolating domain walls (see Fig. 5 for a
sample configuration of the scalar field in the bulk). Despite
the inhomogeneity, the Hawking temperature is constant on
the horizon. From the field theory interpretation, we
expected to have an immense moduli space of geometries
which correspond to different configurations of phase
domains coming from different seed perturbations.
Indeed, we found also solutions with multiple potential
domains which, however, were of a size on the order of the
domain wall width and thus were more similar to the
solutions of Ref. [6]. It is clear that, with an appropriately
large transverse spatial extent of the simulation, one can
explicitly construct solutions with multiple domains. We
intend to investigate this in the future.

FIG. 4. The time evolution of the observable Aϵ defined in
Eq. (6). (Upper panel) Configuration starting from ϕH ¼ 2.
(Lower panel) Configuration starting from ϕH ¼ 3. (Insets)
Profiles of the energy density at given instants. See the discussion
in the text.

FIG. 5. The final configuration of the scalar field ~ϕðx; zÞ ¼
ϕðx; zÞ=z extending to the inhomogeneous horizon at z ¼ 1 for
the solution starting from ϕH ¼ 3.
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We also demonstrated that large black holes with
temperatures below the critical value are stable against
the perturbations that we tried. This indicates that, in the
holographic description, we may naturally expect an over-
cooled phase which only starts to nucleate once it has
dynamically moved into the spinodal branch.
There are numerous directions for further research. Apart

from studying the space of domain geometries mentioned
earlier, it would be very interesting to investigate in detail
the various temporal regimeswhich can be seen in Fig. 4 and
study the dynamics of the phase domains.Naturally, it would
be good to investigate extensions to other dimensions as
well as to ultimately relax any symmetry assumptions.
An additional bonus of the present setup is the appearance
of configurations breaking translation invariance without
specifying explicit inhomogeneous sources. In other words,
the final state solutions spontaneously break translational
invariance. This opens the possibility of applications in the
context of condensed matter physics [17,18].
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