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We study liquid-gas transitions of heat conduction systems in contact with two heat baths under constant
pressure in the linear response regime. On the basis of local equilibrium thermodynamics, we propose an
equality with a global temperature, which determines the volume near the equilibrium liquid-gas transition.
We find that the formation of the liquid-gas interface is accompanied by a discontinuous change in the
volume when increasing the mean temperature of the baths. A supercooled gas near the interface is
observed as a stable steady state.
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Introduction.—Liquid-gas transitions under constant
pressure have been a classical subject of equilibrium
thermodynamics [1]. In reality, however, a temperature
gradient is formed, and thus the transition properties may
be influenced by heat flow. As related experiments,
enhanced heat conduction by condensation and evaporation
was observed in turbulent systems [2,3]. In order to
describe such nonequilibrium phenomena systematically,
we first need to establish a thermodynamic theory for phase
transitions under heat conduction.
As the simplest situation, we consider cases where the

pressure and heat flux are spatially homogeneous, which is
illustrated in Fig. 1. Specifically, let TcðpexÞ be the temper-
ature for the liquid-gas transition in equilibrium under
constant pressure pex. When TcðpexÞ is between the temper-
atures of the baths [4], there is no reliable theory for
determining the steady state even in the linear response
regime. Indeed, the standard hydrodynamic equations [5]
have many stationary solutions [6] once the liquid-gas
interface is contained [7–10]. Furthermore, since the density
profile has to be determined under the constraint of global
mass conservation, the variational principle for selecting the
steady state, if it exists, should be formulated for the whole
system. Such a theory has not been reported yet.
Over the last two decades, statistical mechanics of non-

equilibrium systems has progressed significantly [11–13]
owing to the discovery of universal relations associated with
the second law of thermodynamics [14–20]. As examples
that may be related to the above problem, we point out
extensions of thermodynamic relations [21–26], variational
formulas associated with large deviation theory [27–31],
representations of steady state probability densities [32–34],
and inequalities stronger than the second law [35–38].
However, these results are not directly applicable to the
analysis of liquid-gas transitions in heat conduction.
In this Letter, we generalize an equilibrium variational

principle that determines the volume near the liquid-gas

transition. Concretely, on the basis of local equilibrium
thermodynamics in the linear response regime, we propose
the equality (11) with a global temperature ~T, the main
claim of this Letter, which corresponds to the generalized
variational principle. This allows us to obtain the phase
diagram of the heat conduction system, which can be
examined in experiments.
Setup.—We study the system shown in Fig. 1. A heat bath

of temperature T1 is attached to the left end (x ¼ 0) of the
system, and a second heat bath of temperature T2 to the right
end (x ¼ L), where T1 ≤ T2 is assumed without loss of
generality. We focus on cases that TcðpexÞ is far below the
liquid-gas critical temperature. The lengthL of the system is
fixed throughout this Letter. Other boundaries are thermally
insulating. The top plate is freely movable under constant
pressure pex. For simplicity, gravity effects are ignored.
We first consider the equilibrium case T1 ¼ T2 ¼ T. Let

V and N be the volume of the system and the number of
particles in moles. As an example, we take the van der
Waals equation of state

p ¼ RTρ
1 − bρ

− aρ2 ð1Þ
and the heat capacity CV ¼ ηNR, where R is the gas
constant, a, b, and η are constants depending on the
material, and ρ ¼ N=V. Note that Eq. (1) represents even
metastable states. The van der Waals free energy FvWðT; VÞ
[6] defined by p ¼ −∂FvWðT; VÞ=∂V is derived as

FIG. 1. Schematic illustration of experimental systems.

PRL 119, 260602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 DECEMBER 2017

0031-9007=17=119(26)=260602(6) 260602-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.260602
https://doi.org/10.1103/PhysRevLett.119.260602
https://doi.org/10.1103/PhysRevLett.119.260602
https://doi.org/10.1103/PhysRevLett.119.260602


−NRT log

�
Tη

�
V
N
− b

��
− a

N2

V
þ ðc1T þ c2ÞN; ð2Þ

where c1 and c2 are arbitrary constants that depend on the
reference state for the entropy and the energy, respectively.
Let ρL and ρG be densities corresponding to the liquid
state and the gas state. The two densities satisfy
pðT; ρLÞ ¼ pðT; ρGÞ ¼ pex, with ρL > ρG. We then
express the thermodynamic value of V ¼ N=ρ, which is
either V ¼ N=ρL or V ¼ N=ρG, as V�ðT; pexÞ. For the
following variational function with ðT; pexÞ fixed:

GeqðV;T; pexÞ ≡ FvWðT; VÞ þ pexV; ð3Þ
V�ðT; pexÞ is characterized by the variational principle
Geq(V�ðT; pexÞ;T; pex) ≤ GeqðV;T; pexÞ for any value of
V. There exists a TcðpexÞ value at which V�ðT; pexÞ is
discontinuous as a function of T [6]. This singular behavior
corresponds to the liquid-gas transition in equilibrium
systems, and it is described by the thermodynamic
Gibbs free energy GðT; pexÞ ≡ Geq(V�ðT; pexÞ;T; pex).
For hard spheres with long-range attractive interactions,
TcðpexÞ is exactly determined by means of the variational
principle with Eqs. (2) and (3) [39,40].
Main result.—We consider steady heat conduction states.

We set Δ ≡ T2 − T1 > 0 and ϵ ≡ Δ=T1. We focus on the
linear response regime where ϵ ≪ 1. Since gravity effects
are ignored, the heat conduction state is homogeneous in
directions perpendicular to x. We choose the mean temper-
ature Tm ≡ ðT1 þ T2Þ=2 as a control parameter. Let X be
the position of the interface between the liquid region 0 ≤
x < X and the gas region X < x ≤ L. That is, for a given
value of TðxÞ, we set ρðxÞ ¼ ρLðxÞ in x < X and ρðxÞ ¼
ρGðxÞ in x > X, where the pressure balance equation

p(TðxÞ; ρðxÞ) ¼ pex ð4Þ
holds. Note that ρðxÞ is discontinuous only at the interface
x ¼ X. The continuous temperature profile is determined
by the conductivity κðT; ρÞ. Explicitly, TðxÞ satisfies

−κ(TðxÞ; ρðxÞ)∂xT ¼ J; ð5Þ
where J is constant in x, Tð0Þ ¼ T1, and TðLÞ ¼ T2. In this
manner, TðxÞ and ρðxÞ are determined from Eqs. (4) and (5)
for a given X value. Since the volume V of the system is
obtained by

V
L

Z
L

0

dxρðxÞ ¼ N; ð6Þ

V has a one-to-one correspondence to X. Thus, the
solutions TðxÞ and ρðxÞ satisfying Eqs. (4) and (5) may
be parametrized by V. We express the solutions and the
interface position as Tðx;VÞ, ρðx;VÞ, and XðVÞ, respec-
tively. For the steady state value V�, we set X� ¼ XðV�Þ.
Furthermore, we define X� ¼ 0 or X� ¼ L when the space

is filled with either gas or liquid, respectively. We next
propose a formula for determining V�.
Since local thermodynamic quantities characterize the

steady heat conduction state in the linear response regime, a
candidate for the variational function is

V
L

Z
L

0

dx½f(Tðx;VÞ; ρðx;VÞ)þ pex�; ð7Þ

which is the natural extension of the right-hand side in
Eq. (3). Here, fðT; ρÞ ¼ FvWðT; VÞ=V, and we ignore the
free energy in the liquid-gas interface. Then, in order to
identify fixed parameters, we use the fact that V� has to be
independent of c1 and c2 in Eq. (2). Since the variational
equation should be independent of c1 and c2, we require
that

V
L

Z
L

0

dx½c1Tðx;VÞρðx;VÞ þ c2ρðx;VÞ� ð8Þ

be kept constant with respect to the variation in V. This
means that V

R
L
0 dxTðx;VÞρðx;VÞ=L is a fixed parameter.

Since this is proportional to the temperature averaged over
all particles, we define a global temperature,

~T ¼
R
L
0 dxTðx;VÞρðx;VÞR

L
0 dxρðx;VÞ : ð9Þ

The integral (8) is expressed by ðc1 ~T þ c2ÞN, whose form
is the same as the last two terms of Eq. (2). Thus, the
variational function is expressed as

GðV; ~T; pex;ΔÞ ≡ V
L

Z
L

0

dx½f(Tðx;VÞ; ρðx;VÞ)þ pex�;

ð10Þ
with ð ~T; pex;ΔÞ fixed.
The main claim of this Letter is that the equality

∂GðV; ~T; pex;ΔÞ
∂V

����
V¼V�

¼ Oðϵ2Þ ð11Þ

holds for the steady state value V�. Here, V� is assumed to
satisfy a scaling relation that the thermodynamic state in the
liquid or the gas region persists for ðN;ΔÞ → ðλN; λΔÞ
with 1 ≪ λ ≪ ϵ−1 [6]. The derivation of Eq. (11) is given in
the paragraphs including Eqs. (12) and (13). Using
Eq. (11), we can determine V�ð ~T; pexÞ and X� as follows.
First, we plot GðV; ~T; pex;ΔÞ as a function of X ¼ XðVÞ.
When this graph shows a local minimum at X ¼ X� in
0 < X < L, we find the interface at x ¼ X� because
Eq. (11) is satisfied. When there is no local minimum,
X� is determined as either X� ¼ 0 or X� ¼ L, which
minimizes G. Note that, for equilibrium cases where
T1 ¼ T2 ¼ T, there is no local minimum when
T ≠ TcðpexÞ. The slope of G as a function of X changes
its sign at T ¼ TcðpexÞ. It is then found that X� ¼ L for
T < TcðpexÞ and X� ¼ 0 for T > TcðpexÞ.
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Example.—Figure 2(a) shows the graph of the interface
position X� as a function of ~T for the system with
TcðpexÞ ¼ 262.7 K. Since ~T is not an experimentally
controllable parameter, we employ Tm so as to predict
phenomena in experiments. The relation between ~T and Tm
is shown in the inset of Fig. 2(b). When there is no
interface, ~T ¼ Tm þOðϵ2Þ holds [6]. By using the relation
in the inset, we draw a graph of X� as a function of Tm in
Fig. 2(b). We find that the transition from X� ¼ L to 0 <
X� < L is discontinuous. Since T2 > TcðpexÞ on the right
side of the left dotted line in Fig. 2, the whole system is
filled with liquid even when T2 is slightly larger than
TcðpexÞ. This means that the superheated liquid is stable
near the right boundary. On the other hand, as
T1 − TcðpexÞ → 0, which is indicated by the right dotted
line in Fig. 2, the liquid region disappears continuously.
The discontinuous transition is connected to the standard

liquid-gas transition when Δ → 0. However, the nature of
the discontinuous transition is rather different. First, if the
local temperature of the interface were always identical to
the equilibrium transition temperature TcðpexÞ, X� would
change continuously. Thus, the discontinuous transition
implies that TðX�Þ − TcðpexÞ ≠ 0, which is indeed

observed in the top panel of Fig. 3. For the chemical
potential μðT; ρÞ ≡ ½fðT; ρÞ þ pðT; ρÞ�ρ−1, we plot its pro-
file μ(Tðx;V�Þ; ρðx;V�Þ) as a function of x in the bottom
panel of Fig. 3. We then find the discontinuous jump at the
interface x ¼ X�. This means TðX�Þ − TcðpexÞ ≠ 0

because TcðpexÞ is characterized by μ(TcðpexÞ; ρG) ¼
μ(TcðpexÞ; ρL). The position ~x satisfying Tð~xÞ ¼ TcðpexÞ
is obtained from the crossing point of the two curves
μ(Tðx;V�Þ; ρGðxÞ) and μ(Tðx;V�Þ; ρLðxÞ), as shown in
Fig. 3. It should be noted that, in the region X� < x < ~x, the
supercooled gas is observed as a stable steady state.
Outline of the derivation of Eq. (11).—There are two key

steps in the derivation of Eq. (11). The first step is that,
when there is no singularity of ρðx;VÞ in the region
I ¼ ½x1; x2�, the integration of a local quantity
ϕ(TðxÞ; ρðxÞ) over region I is estimated asZ

x2

x1

dxϕ(Tðx;VÞ; ρðx;VÞ) ¼ jIjϕðTI
m; ρ̄IÞ þOðϵ2Þ; ð12Þ

which follows from the trapezoidal rule for the
integral after the change of the integration variable from
x to T. Here, TI

m ≡ ½Tðx1;VÞ þ Tðx2;VÞ�=2, ρ̄I ≡R
x2
x1
dxρðx;VÞ=jIj and jIj ¼ x2 − x1. The relation (12)

indicates that a nonuniform system with (Tðx;VÞ;
ρðx;VÞ) is equivalent to an equilibrium system with
ðTI

m; ρ̄IÞ. We employ (12) with ϕ ¼ f or ϕ ¼ ρT.
Next, we consider the case in which the density is

discontinuous at x ¼ X. Since there is no singularity in the

(a)

(b)

FIG. 2. Interface position X� (the filled circles) as a function of
(a) ~T and (b) Tm. The open circles represent X� ¼ L and X� ¼ 0.
The dotted lines areTm¼257.7K [corresponding toT2 ¼ TcðpexÞ]
and 267.7 K [corresponding to T1 ¼ TcðpexÞ], where TcðpexÞ ¼
262.7 K.The inset of (a) shows examples of thevariational function
with local minimum in 0 < X < L for higher ~T values. The inset of
(b) shows a graphof themap fromTm to ~T. The parameter values are
a ¼ 0.365 Pam6=mol and b ¼ 4.28 × 10−5 m3=mol of the van
der Waals equation for CO2 [41]. CV ¼ 5NR, where
R ¼ 8.31 J=K mol, and κ ¼ 0.1 W=mK in the liquid branch
ρ > ρc and κ ¼ 0.02 W=mK in the gas branch ρ < ρc, where
ρc ¼ 104 mol=m3 referring to the database [42]. N ¼ 1 mol
without loss of generality, pex¼4.0×106Pa and Δ ¼ 10 K.

FIG. 3. Profiles of local thermodynamic variables for ~T ¼
259.0 K and T2−T1¼10.0K (T1 ¼ 257.36 K, T2 ¼ 267.36 K).
The temperature Tðx;V�Þ, the density ρðx;V�Þ, and the chemical
potential μðx;V�Þ ¼ μ(Tðx;V�Þ; ρðx;V�Þ) are shown with red
lines in the top, middle, and bottom panels, respectively. The green
lines correspond to ρGðxÞ and μ(Tðx;V�Þ; ρGðxÞ) in the middle
and bottom panels, and the blue lines correspond to ρLðxÞ and
μ(Tðx;V�Þ; ρLðxÞ). The inset of the bottom panel is the close-up
view of the chemical potential profiles around the interface. The
liquid-gas interface exists at X�=L ¼ 0.547. The constants c1 and
c2 are chosen as c1 ¼ −113.45 J=molK and c2 ¼ 7400 J=mol.
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liquid region 0 ≤ x < X or the gas region X < x ≤ L, we
apply Eq. (12) to each region. We use L and G, respec-
tively, as the quantity superscripts. By letting NL−G� and
TL−G
m� as the steady state values, it is assumed that the

thermodynamic state in the liquid region, ðpex; TL
m�; NL� Þ,

can be invariant under the scale transformations
ðΔ; NÞ → ðλΔ; λNÞ, with 1 ≪ λ ≪ ϵ−1, which corresponds
to the extension of the gas region [6]. This scaling
assumption is expressed as TL

mðpex; NL� ; λΔ; λNÞ ¼
TL
mðpex; NL� ;Δ; NÞ ¼ TL

m�. Similarly, the scaling relation
for keeping the thermodynamic state in the gas region is
also assumed. From these relations and TG

m� − TL
m� ¼ Δ=2,

we obtain

TL−G
m� ¼ TcðpexÞ ∓ Δ

2

NL−G�
N

þOðϵ2Þ: ð13Þ

This is the second key step in the derivation of Eq. (11).
To evaluate the left-hand side of Eq. (11), we consider

GðV; ~T; pex;ΔÞ ¼ GL þ GG. We estimate GL and GG using
Eq. (12) and take the variationV → V þ δV inG by fixing ~T,
pex and Δ. The variation δV induces δNG, δNL, δTG

m, δTL
m,

δVG, and δVL. The straightforward calculation using
Eq. (13) leads to GðV�þδV; ~T;pex;ΔÞ−GðV�; ~T;pex;ΔÞ¼
Oðϵ2Þ. This ends the proof of Eq. (11) [6].
Concluding remarks.—The result of our theory is sche-

matically summarized as a phase diagram in Fig. 4. We
emphasize that either the supercooled gas or the super-
heated liquid becomes stable as a local equilibrium state in
heat conduction. This striking phenomenon is a conse-
quence of the discontinuous transition from the liquid to the
liquid-gas coexistence state. Even without quantitative
measurements, observing this qualitatively new phenome-
non in experiments and numerical simulations would be
very stimulating. Before ending this Letter, we present a
few remarks.
As a different approach to determining the position of the

liquid-gas interface, the density-gradient dependent pressure

1

2
d1ξ2ð∂xρÞ2 − d2ξ2∂2

xρþ d3Jξ∂xρ ð14Þ

may be added to the left-hand side of Eq. (4), where ξ is the
width of the interface. For equilibrium cases in which J ¼ 0,

d1 ¼ −ρ2∂ðρ−2d2Þ=∂ρ is derived according to the van der
Waals theory [8].When this relation is applied to Eq. (14) for
the heat conduction states, the interface temperature turns out
to deviate from TcðpexÞ through the influence of the d3 term
[6]. While the density-gradient terms (14) are required to
describe the density profile inside the interface, the varia-
tional principle (11) determines the profile outside the
interface. When the density profile inside the interface is
not our concern, a density-gradient term is not necessary in
the variational functional (10). It should be noted that, for
equilibrium cases, the density-gradient dependent pressure is
systematically obtained from the free energy functional with
the density-gradient term. It will be an important future
subject to explore such a unified theory for heat conduction
states.
Next, we remark on future theoretical studies. Since we

focus on the linear response regime, we may use repre-
sentations of the probability distribution and the variational
principles for the steady state [32–34,43–46]. It is a
challenging problem to derive Eq. (11) on the basis of
these results. Related to this problem, one may study more
general experimental configurations than Fig. 1. The
variational function G can be similarly defined for such
cases, but the variational problem cannot be easily solved
because of the complicated geometry of the interface.
Another possible study is to seek an extended form of
thermodynamics. The liquid-gas coexistence predicted in
this Letter may be interpreted as a phase separated by a
first-order transition. We conjecture that the transition is
characterized by the singularity of the generalized free
energy Gð ~T; pex;ΔÞ ≡ G(V�ð ~T; pex;ΔÞ; ~T; pex;Δ) that sat-
isfies the fundamental relation in thermodynamics dG ¼
−S�d ~T þ V�dpex for each Δ value, where S� is the spatial
integration of the local entropy density [47]. This frame-
work differs from previous theories [48–52]. When con-
structing generalized thermodynamics, we should carefully
study the manner of contact [53–56]. Last but not least, we
wish to extend our theory to describe thermodynamic
phases of active matter [57,58] and phase transitions in
turbulent flow [2,3]. Although our theory is firmly for-
mulated in the linear response regime, a framework using
global quantities, which is our key concept, may be
developed for the study of phenomena far from equilib-
rium. It would be quite interesting to discover new
phenomena as the result of such a framework for general
settings with various materials.
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FIG. 4. Schematic phase diagram in the heat conduction system
under constant pressure.
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