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We observe never-ending oscillations in systems undergoing collision-controlled aggregation and
shattering. Specifically, we investigate aggregation-shattering processes with aggregation kernels K; ; =
(i/7)* 4 (j/i)* and shattering kernels F;; = AK;;, where i and j are cluster sizes, and parameter A
quantifies the strength of shattering. When 0 < a < 1/2, there are no oscillations, and the system
monotonically approaches a steady state for all values of 4; in this region, we obtain an analytical solution
for the stationary cluster size distribution. Numerical solutions of the rate equations show that oscillations
emerge in the 1/2 < a < 1 range. When 4 is sufficiently large, oscillations decay and eventually disappear,
while for 1 < A.(a), oscillations apparently persist forever. Thus, never-ending oscillations can arise in
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closed aggregation-shattering processes without sinks and sources of particles.
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Two complementary processes, aggregation and fragmen-
tation [1-7], occur in numerous systems that dramatically
differ in their spatial and temporal scales. Reversible polym-
erization in solutions [1,2] and merging of prions (cell
proteins) [8] are typical examples on the molecular scale.
On somewhat larger scales, airborne particles perform
Brownian motion in atmosphere and coalesce, giving rise
to smog droplets [9]. Aggregation of users on the Internet
leads to the emergence of communities and forums [3,10],
which can further merge or split. Vortexes in a fluid flow
merge and decompose forming turbulent cascades [11].
On much larger scales, aggregation-fragmentation processes
take place in planetary rings, like Saturn rings, where
the particle size distribution is determined by a subtle
balance between aggregation and fragmentation of the rings’
particles [12—16].

In spatially homogeneous well-mixed systems, the
aggregation and fragmentation processes are described
by an infinite set of nonlinear ordinary differential equa-
tions (ODEs) for the cluster densities. Such equations are
intractable, apart from a few special cases. Still, the long-
time behavior is occasionally known—the processes of
aggregation and fragmentation act in opposite directions,
and the cluster size distribution often becomes stationary
in the long-time limit. (In exceptional cases, the typical
cluster size may diverge, or the system may undergo a
nonequilibrium phase transition [17-23].)

The emergence of the stationary cluster size distribution
can be mathematically interpreted as the manifestation of
the fixed point of the differential equations [24]. For a
single ODE, fixed points determine the long-time behavior;
for two coupled ODEs, fixed points and limit cycles
potentially influence the asymptotic behavior. In the case
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of infinitely many coupled ODEs, limit cycles are
feasible, yet they have not been observed in aggregation-
fragmentation processes. More precisely, there were signs
of oscillations in a few open systems usually driven by a
constant source of monomers and by a sink of large clusters.
Here we report oscillations in a closed aggregation-
fragmentation system with strict mass conservation.

In the most important case of binary aggregation, a
collision between two clusters composed of i and j
monomers may result in the formation of a joint aggregate

of i + j monomers. Symbolically, [i] + | J]K—'l[z + j], where
K;; is the merging rate (see Fig. 1). Let n; be the
concentration of clusters that contain £k monomers. These
densities obey the Smoluchowski equations [3,4]:

dn; 1 -
d—tkzi ZKi.jni”j_nkZKi,kni' (1)
i+j=k i=1

The gain terms on the right-hand side describe the
formation rate of k-mers from smaller clusters, while the
loss terms account for the disappearance of k-mers due to
collisions with other clusters.

In this Letter, we consider collision-controlled fragmen-
tation which has been studied from the general perspective
[25,26], and it was also applied to modeling interstellar dust
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FIG. 1. Aggregation (a) and shattering (b) of clusters.
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clouds and planetary rings [12,13,15]. We explore the
extreme version, namely, a complete shattering of two
colliding partners into monomers (see Fig. 1).
Symbolically, [i] + []]F—’> (1] + [1] + ...[1], where F; ; quan-
T

tifies the shattering rate. It has been shown [12] that this
shattering model is rather generic—realistic impact models
with a strong dominance of small debris yield the same
qualitative results for the cluster size distribution. Following
Ref. [12], we assume that the shattering and aggregation
kernels are proportional,

Fi.j:/{Ki.j' (2)

The parameter A characterizes the relative frequency of
collisions leading to merging and shattering.
Incorporating the shattering process with the shattering
kernel (2) into Eq. (1), we arrive at
dl’ll =) A 0 00 ) .
o~ M Z Kyn; + EZ Z(l + ))Kijnin;
i=1 i=2 j=2

j=

+ }J’ll ZjKle’lj,
Jj=2

dn 1 k—1 [
d—tk =3 Z Kijiming—; = (1 + A)ny Z Ky in;. 3)
i=1 i=1

Shattering leads to the increase of monomers explaining
the gain terms in the first Eq. (3) and to the decrease of the
densities of other clusters explaining the loss term in the
second equation (valid when k > 2).

The kernels are symmetric K;; = K;; and usually
homogeneous functions of i and j. Aggregation-shattering
equations (3) for the generalized product kernels K; ; =
(ij)* have been investigated in Ref. [12]. A more general
family of kernels K; ; = i¥ j# + i* j* is often used in studies
of aggregation; see, e.g., Refs. [4,27]. Here we shall focus
on a special case of y = —v,

K;;=(i/j)*+ (j/i)* (4)

known as a generalized Brownian kernel [28]; such kernels
often arise in applications [4,29,30].

Below, we consider kernels (4) with @ < 1; when a > 1,
the aggregation equations become ill-defined due to
instantaneous gelation [31-36]. Time-dependent analytical
solutions of Eq. (3) have been found [12] only for the
simplest case of a constant kernel (a = 0).

The steady-state solutions have been obtained for a
wider class of models, including an irreversible aggregation
model with a monomer source [27], an aggregation-
fragmentation model with the generalized product kernel
[12], and for a somewhat similar open system with a source
of monomers and collisional evaporation of clusters with
the kernel K;; = i*j* + i#j¥ [37]. An open aggregating

system with the same coagulation kernel driven by the
input of monomers and supplemented with the removal of
large clusters has been studied in Ref. [38]. Stable
oscillations have been numerically observed [38] in this
system with a finite number of cluster species. For a closed
system consisting of monomers, dimers, trimers, and
excited monomers, stable oscillations of concentrations
have been reported [39]. Steady chemical oscillations have
been also found in a simple dimerization model as well in
open catalytic systems with an input of mass (see, e.g.,
Refs. [40,41] and references therein).

Here we consider closed systems undergoing aggrega-
tion and shattering processes described by Egs. (3) and (4).
One expects that in the closed system with two opposite
processes and without sinks and sources, a steady state is
achieved. This is indeed the case when a < 1/2.
Surprisingly, for 1/2 < a <1 and small values of 4, a
steady state is not reached and instead cluster concen-
trations undergo never-ending oscillations.

An important advantage of the kernel (4) is the pos-
sibility to apply highly efficient numerical methods devel-
oped in recent studies [42—47]. In simulations, we used up
to Neg = 219 equations to guarantee the requested accu-
racy; see the Supplemental Material [48] for details.

We confirm the efficiency and accuracy of the above
fast-integration method for constant kernels (¢ = 0) and
find that the smaller the parameter A, the longer it takes for
the system to reach the steady state; see the Supplemental
Material. This tendency persists for the kernels (4) with
a > 0. We also observe that for a < 1/2, the system arrives
at its steady state with a monotonic evolution of the
concentrations 7, (¢). Moreover, the steady-state distribu-
tion of the cluster concentrations agrees fairly well with
analytical results for n; derived below; this is illustrated
in Fig. 2. In the language of dynamical systems [24], the
system possesses a stable fixed point with steady-state
cluster size distribution.

For 1/2 < a <1, we also observed the relaxation to a
steady state for sufficiently large A; the relaxation occurs
through oscillations for smaller 4, and when 4 < .(a) the
oscillations persist. We detected oscillations independent of
the initial conditions.

Equations (3) are invariant with respect to rescaling
of the conserved mass density M = Y, kn; (see the
Supplemental Material). Below, we report simulation
results for the stepwise initial distribution

0.1 k=1,...,10,
0) = 5
e (0) {O o 5)

and we also simulated the evolution starting with mono-
disperse initial condition n;(0) = M§,, with the same
mass M = 5.5. Unless explicitly stated, the results below
correspond to the initial condition (5).
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FIG. 2. Comparison of the steady-state numerical solution of
Eq. (3) for the kernel (4) with @ = 0.05, 2 = 0.003 (top) and
a=0.1, 2=0.02 (bottom) with the analytical steady-state
solution Eq. (8).

Figures 3 and 4 depict the time dependence of the cluster
density N(t) = > ;- m(t). Figure 3 shows that in the
range 0.6 < a < 0.8 and 0.001 < 1 < 0.01, the oscillations
become more pronounced when a increases and 4
decreases. In Fig. 4, we show oscillating solutions of
N(7) in the parameter range 0.9 < a < 1. The new feature
is the emergence of stationary oscillations. All cluster
concentrations n,(¢) perform these stable oscillations;
the form of the oscillations depends on the cluster size,
and the amplitude decreases with the increasing size; see
Fig. 5. Figure 6 demonstrates that the system reaches a limit
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FIG. 3. Time dependence of the cluster density N(f) for
a =20.7 (top) and a = 0.75 (bottom) and different 1. For all
these systems, damped oscillations are found that tend to a steady
state. The oscillations become more pronounced with increasing
a and decreasing A.

cycle [49], which does not depend on the total mass or
initial conditions.

Oscillations in closed systems qualitatively differ from
the oscillations in open systems [38]. In the closed system,
the concentration oscillations occur in a form of “running
waves” propagating through the cluster size distribution
with some average slope (see the Supplemental Material for
details); such behavior results from the conservation of the
total mass yielding a limit cycle. In the open systems, the
total mass is not conserved, and the pulsations of the total
mass are the chief driving mechanism; the cluster mass
distribution evolves in an approximately self-similar man-
ner during each mass pulse [38].

Our results indicate the existence of a critical value of
Ac(a), such that for A < A.(a), the steady-state solution is
no longer stable, and instead the system approaches a
limit cycle. Although for a < 0.9 we have observed only
damped oscillations, we believe that stationary oscillations
would emerge for all a > 1/2, but the required values of 1
are too small. The number of equations N, needed for very
small 4 is beyond the present computational facilities (see
the Supplemental Material).

Our major observations may be summarized as follows:
(1) When a < 1/2, there exists a single stable fixed point
for all values of 4; the steady-state distribution of cluster
sizes n; corresponds to this fixed point. (2) When 1/2 <
a <1 and A > A.(a), the system has a single stable fixed
point; it may be a stable focus, resulting in dumped
oscillations. (3) When 1/2 <a <1 and A < A.(a), the
system has an attractive limit cycle. (4) Inthe 1/2 <a < 1
range, the above assertions are conjectural and require
further verification.

The emerging steady oscillations in a closed system
look surprising as they seemingly violate the second law
of thermodynamics. There is no contradiction due to the
lack of a detailed balance, which is basically the rule in
aggregation-fragmentation processes [17-21,23]. A few
exceptions from this rule exist [1,3,50,51], but there are
no oscillations in such systems.

To probe the steady-state cluster size distribution ana-
lytically, we set dn;/dt =0 and dny/dt =0 in Eq. (3)
and investigate the resulting infinite system of algebraic

N(t)

0 50 100 150 200
time

FIG. 4. Time dependence of the cluster density N(f) for
a = 0.9 and different 1. For small 1 < 4.(a), stable oscillations
emerge.
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FIG. 5. Stationary oscillations of the aggregate concentrations

for a = 0.95 (top) and a = 1 (bottom) and 4 < A.(a). The shape
of the oscillations depends on the aggregates’ size (see the
Supplemental Material for details). Inset: The amplitude of the
oscillations decreases with the size k; the dashed line is k= 7/4.

equations. Introducing the generating functions C.,(z) =
> s1kFan 2k, we transform Eq. (3) into

Ca(Z)C_a(Z) - (1 + j') (Mac—a(z) - M—aca(z))
+1+ )z (M, +M_,) =0. (6)

Here, C.,(1) = M.,. To analyze n; for k > 1, we use the
same methods as in Refs. [3,28]. When a = 0, the tail is
ny = An~'2k=3/2¢=#k; see Ref. [12]. This suggests that
ng = Ck e~ for k> 1, with some constants C, ,
and . Expanding the generating functions C.,(z) near
7 > 1-0, where 7 = z/z, and 7, = e®, we get

0.3
~ Monodisperse,M=3 —
0.2} Pol _disgerse,M=3
~ Monodisperse,M=5.5
I Polydisperse,M=5.5 —
0.1
0 0.2 0.4 0.6 0.8

FIG. 6. Limit cycle for the steady-state oscillations in terms
of n(#) and n,(t) for a =0.95 and A = 0.005. For the total
mass density M = 5.5, the initial conditions are monodisperse
ny = M, and stepwise (5). For M = 3, the initial and current
values of n;(t) and n,(t) are rescaled accordingly. The relaxation
to the unique limit cycle is clearly visible.

Cia(2) = Cia(zo) + CT(I £a—7)(1 = )Tl (7)

Here, I'(x) is the gamma function, and we assume that
Culzo) = Y opo1knyzl < o exists for given a and 7.
Substituting C.,(z) into Eq. (6), we obtain terms with
different powers of (1 — z’). One must equate to zero each
such term. In this way, we obtain equations for the zero-
order terms and the terms of the order of (1 — z/)*™*%~!, from
which we find 7 = 3/2, @ = 42, and C = MAz~"/? (see the
Supplemental Material). The final result for n; reads

ne = An~2ME32e 7% for k> 1. (8)

The above analysis assumes that C,(zq) exists. This is
consistent when a < 1/2 but fails for a > 1/2 (see the
Supplemental Material), thereby manifesting a qualitative
change in the system dynamics, which we indeed observe
in simulations.

To conclude, we studied numerically and analytically a
system of particles undergoing collision-controlled aggre-
gation and shattering. We considered spatially homogeneous
well-mixed systems characterized by the aggregation kernel
(4) and the shattering kernel F; ; = AK; ;. When the param-
eter a characterizing the kernel K;; is sufficiently small
a < 1/2, we obtained an analytical solution for the steady-
state cluster size distribution and confirmed numerically the
relaxation of the size distribution to this steady-state form.
For a > 1/2, the temporal behavior drastically depends on
the shattering constant: When 4 > 1.(a), the system relaxes
to a steady state through damped oscillations, while for
A < A.(a), the oscillations become stationary and persist
forever (Figs. 4-6).

Using the language of dynamical systems, our observa-
tions implied that (i) for ¢ < 1/2, the governing system of
ODE:s possesses a single stable fixed point for all values
of A, (ii) for 1/2 < a <1, the system has a single stable
fixed point (which may be a stable focus) when 4 > 1.(a),
and (iii) for 1/2 <a <1 and 1< 4.(a), the system
possesses a stable limit cycle.

Limit cycles may arise already for two coupled ODEs
[24]. Still, the emergence of stable oscillations in a closed
system comprising an infinite number of species and
undergoing aggregating and shattering is striking. As far
as we know, these oscillations have not been previously
observed, and the relaxation towards the steady state was
believed to be the only possible scenario.

The reported results are rather generic: For the two-
parameter family of kernels K;; =i/ + i#j*, we also
observed never-ending oscillations when 4 — v > 1 and 1is
small enough. Moreover, for the collision-controlled frag-
mentation models with a strong dominance of small debris,
the results are similar to the reported ones for the complete
shattering; see the Supplemental Material. Our findings
may shed some light on the nature of the periodic formation
and decay of clumps in the F Ring of Saturn—the closed
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system of particles of various masses that apparently
undergo collision-controlled aggregation and fragmenta-
tion; this effect is still not fully understood (see,
e.g., Ref. [52]).
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