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Liquid helium and spin-1=2 cold-atom Fermi gases both exhibit in their superfluid phase two distinct
types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations. In the long
wavelength limit, revising and extending the theory of Landau and Khalatnikov initially developed for
helium [Zh. Exp. Teor. Fiz. 19, 637 (1949)], we obtain universal expressions for three- and four-body
couplings among these two types of excitations. We calculate the corresponding phonon damping rates at
low temperature and compare them to those of a pure phononic origin in high-pressure liquid helium and in
strongly interacting Fermi gases, paving the way to experimental observations.
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Introduction.—Homogeneous superfluids with short-
range interactions exhibit, at sufficiently low temperature,
phononic excitations ϕ as the only microscopic degrees of
freedom. In this universal limit, all superfluids of this type
reduce to a weakly interacting phonon gas with a quasi-
linear dispersion relation, irrespective of the statistics of the
underlying particles and of their interaction strength.
Phonon damping then only depends on the dispersion
relation close to zero wave number (namely, its slope and
third derivative) and on the phonon nonlinear coupling,
deduced solely from the system equation of state through
Landau-Khalatnikov quantum hydrodynamics [1].
In experiments, however, temperatures are not always low

enough to make the dynamics purely phononic. Other
elementary excitations can enrich the problem, such as
spinless bosonic rotons in liquid helium 4 and spinful
fermionic BCS-type pair-breaking excitations in spin-1=2
cold-atom Fermi gases. These excitations, denoted here as γ
quasiparticles, exhibit in both cases an energy gap Δ > 0.
Remarkably, as shown by Landau and Khalatnikov [1], the
phonon-roton coupling, and more generally phonon cou-
pling to all gapped excitations as we shall see, depend to
leading order in temperature only on a few parameters of the
dispersion relation of the γ quasiparticles, namely the value
of the minimumΔ and its location k0 in wave number space,
their derivatives with respect to density, and the effective
mass m� close to k ¼ k0. We have discovered however that
the ϕ-γ coupling of Ref. [1] is not exact, a fact apparently
unnoticed in the literature. Our goal here is to complete the
result of Ref. [1], and to quantitatively obtain phonon
damping rates due to the ϕ-γ coupling as functions of
temperature, a nontrivial task in the considered strongly
interacting systems. We restrict to the collisionless regime
ωqτγ ≫ 1 and ωqτϕ ≫ 1, where ωq is the angular eigen-
frequency of the considered phonon mode of wave vector q,
and τγ (τϕ) is a typical collision time of thermal γ

quasiparticles (thermal phonons). An extension to the
hydrodynamic regime ωqτγ ≲ 1 or ωqτϕ ≲ 1 may be
obtained from kinetic equations [2]. An experimental test
of our results seems nowadays at hand, either in liquid
helium 4, extending the recent work of Ref. [3], or in
homogeneous cold Fermi gases, which the breakthrough of
flat-bottom traps [4] allows one to prepare [5] and to
acoustically excite by spatiotemporally modulated laser-
induced optical potentials [6,7].
Landau-Khalatnikov theory revisited.—We recall the

reasoning of Ref. [1] to get the phonon-roton coupling in
liquid helium 4, extending it to the phonon-fermionic
quasiparticle coupling in unpolarized spin-1=2 Fermi gases.
We first treat in first quantization the case of a single roton or
fermionic excitation, considered as a γ quasiparticle of
position r, momentum p, and spin s ¼ 0 or s ¼ 1=2. In a
homogeneous superfluid of density ρ, its Hamiltonian is
given by ϵðp; ρÞ, an isotropic function of p such that
p ↦ ϵðp; ρÞ is the γ-quasiparticle dispersion relation. In
the presence of acoustic waves (phonons), the superfluid
acquires position-dependent density ρðrÞ and velocity vðrÞ.
For a phonon wavelength large compared to the γ-quasi-
particle coherence length [8], here its thermal wavelength
ð2πℏ2=m�kBTÞ1=2 [9], and for a phonon angular frequency
small compared to the γ-quasiparticle “internal” energy Δ,
we can write the γ-quasiparticle Hamiltonian in the local
density approximation [10,11]:

H ¼ ϵ(p; ρðrÞ)þ p · vðrÞ: ð1Þ

The last term is a Doppler effect reflecting the energy
difference in the lab frame and in the frame moving with the
superfluid. For a weak phononic perturbation of the super-
fluid, we expand the Hamiltonian to second order in density
fluctuations δρðrÞ ¼ ρðrÞ − ρ:
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H≃ ϵðp; ρÞ þ ∂ρϵðp; ρÞδρðrÞ þ p · vðrÞ

þ 1

2
∂2
ρϵðp; ρÞδρ2ðrÞ; ð2Þ

not paying attention yet to the noncommutation of r and p.
Phonons are bosonic quasiparticles connected to the
expansion of δρðrÞ and vðrÞ on eigenmodes of the quan-
tum-hydrodynamic equations linearized around the homo-
geneous solution at rest in the quantization volume V:�
δρðrÞ
vðrÞ

�
¼ 1

V1=2

X
q≠0

��
ρq
vq

�
b̂q þ

�
ρq
−vq

�
b̂†−q

�
eiq·r; ð3Þ

with modal amplitudes ρq ¼ ½ℏρq=ð2mcÞ�1=2 and vq ¼
½ℏc=ð2mρqÞ�1=2q, m being the mass of a superfluid
particle and c the sound velocity. The annihilation and
creation operators b̂q and b̂†q of a phonon of wave vector q
and energy ℏωq ¼ ℏcq obey usual commutation relations
½b̂q; b̂†q0 � ¼ δq;q0 .
For an arbitrary number of γ quasiparticles, we switch to

second quantization and rewrite Eq. (2) as

Ĥ ¼
X
k;σ

ϵkγ̂
†
kσγ̂kσ þ

X
k;k0;q;σ

A1ðk;q;k0Þ
V1=2 ðγ̂†k0σγ̂kσb̂q þH:c:Þ

× δkþq;k0 þ
X

k;k0;q;q0;σ

A2ðk;q;k0;q0Þ
V

γ̂†k0σγ̂kσδkþq;k0þq0

×

�
b̂†q0 b̂q þ

1

2
ðb̂−q0 b̂q þH:c:Þ

�
; ð4Þ

where γ̂kσ and γ̂†kσ are bosonic (rotons, s ¼ 0, σ ¼ 0) or
fermionic (s ¼ 1=2, σ ¼ ↑;↓) annihilation and creation
operators of a γ quasiparticle of wave vector k ¼ p=ℏ in
spin component σ, obeying usual commutation or anticom-
mutation relations. The first sum in the right-hand side of
Eq. (4) gives the γ-quasiparticle energy in the unperturbed
superfluid, with ϵk ≡ ϵðℏk; ρÞ. The second sum, originating
from the Doppler term and the term linear in δρ in Eq. (2),
describes absorption or emission of a phonon by a γ
quasiparticle, characterized by the amplitude

A1ðk;q;k0Þ ¼ ρq
∂ρϵk þ ∂ρϵk0

2
þ vq ·

ℏkþ ℏk0

2
; ð5Þ

where q, k, and k0 are the wave vectors of the incoming
phonon and the incoming and outgoing γ quasiparticles.
Equation (5) is invariant under exchange of k and k0. This
results from symmetrization of the various terms, in the form
½fðpÞeiq·r þ eiq·rfðpÞ�=2 with r and p canonically conju-
gated operators, ensuring that the correct form of Eq. (2) is
Hermitian. The third sum in Eq. (4), originating from the
terms quadratic in δρ in Eq. (2), describes direct scatteringof a
phonon on a γ quasiparticle, with the symmetrized amplitude

A2ðk;q;k0;q0Þ ¼ ρqρq0
∂2
ρϵk þ ∂2

ρϵk0

2
; ð6Þ

where the primed wave vectors are the ones of emerging
quasiparticles. It also describes negligible two-phonon
absorption and emission. The effective amplitude for ϕ-γ
scattering is obtained by adding the contributions of the direct
process (terms of Ĥ quadratic in b̂) and of the absorption-
emission or emission-absorption process (terms linear in b̂)
treated to second order in perturbation theory [1]:

ð7Þ

where in the second (third) term the γ quasiparticle first
absorbs phonon q (emits phonon q0) then emits phonon q0
(absorbs phononq). Up to this point this agrees with Ref. [1],
except that the first derivative ∂ρΔ in Eq. (5), thought to be
anomalously small in low-pressure helium, was neglected in
Ref. [1]. Equation (7), issued from a local density approxi-
mation, holds to leading order in a low-energy limit. We then
take the T → 0 limit with scaling laws

q ≈ T; k − k0 ≈ T1=2 ð8Þ

reflecting the fact that the thermal energy of a phonon is
ℏcq ≈ kBT and the effective kinetic energy of a γ quasipar-
ticle, that admits the expansion

ϵk − Δ ¼
k→k0

ℏ2ðk − k0Þ2
2m�

þOðk − k0Þ3; ð9Þ

is also ≈kBT. The coupling amplitudes A1 and energy
denominators in Eq. (7) must be expanded up to relative
corrections of order T [12]. On the contrary, it suffices to
expand A2 to leading order T in temperature. We hence get
our main result, the effective coupling amplitude of the ϕ-γ
scattering to leading order in temperature:

Aeff
2 ðk;q;k0;q0Þ

∼
T→0

ℏq
mcρ

�
1

2
ρ2Δ00 þ ðℏρk00Þ2

2m�
þ ℏ2k20

2m�

×

��
ρΔ0

ℏck0

�
2

uu0 þ ρΔ0

ℏck0

�
ðuþ u0Þ

�
uu0 −

ρk00
k0

�

þ 2m�c
ℏk0

w

�
þm�c

ℏk0
ðuþ u0Þw

þ u2u02 −
ρk00
k0

ðu2 þ u02Þ
��

: ð10Þ
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Here Δ0, k00, Δ00 are first and second derivatives of Δ and k0
with respect to ρ; u ¼ ðq · k=qkÞ, u0 ¼ ðq0 · k=q0kÞ, w ¼
ðq · q0=qq0Þ are cosines of the angles between k, q, and q0;
our results hold for k0 ¼ 0 provided the limit k0 → 0 is taken
in Eq. (10). In Eq. (3.17) of Ref. [1], the Δ0 terms were
neglected as said, but the last term in Eq. (10), with the factor
ρk00=k0, was simply forgotten.
Damping rates.—A straightforward application of

Eq. (10) is a Fermi-golden-rule calculation of the damping
rate Γscat

q of phonons q due to scattering on γ quasiparticles.
The γ quasiparticles are in thermal equilibrium with Bose or
Fermi mean occupation numbers n̄γ;k ¼ ½expðϵk=kBTÞ−
ð−1Þ2s�−1. So are phonons in modes q0 ≠ q, with Bose
occupation numbers n̄b;q0 ¼ ½expðℏωq0=kBTÞ − 1�−1; mode
q is initially excited (e.g., by a soundwave)with an arbitrary
number nb;q of phonons. By including both loss qþk→
q0þk0 and gainq0þk0→qþkprocesses [13] and summing
over σ, one finds that ðd=dtÞnb;q ¼ −Γscat

q ðnb;q − n̄b;qÞ,
with

Γscat
q ¼2π

ℏ
ð2sþ1Þ

Z
d3kd3q0

ð2πÞ6 ½Aeff
2 ðk;q;k0;q0Þ�2

×δðϵkþℏωq−ϵk0 −ℏωq0 Þ n̄b;q0 n̄γ;k0 ½1þð−1Þ2sn̄γ;k�
n̄b;q

ð11Þ

and k0 ¼ kþ q − q0. As our low-energy theory only holds
for kBT ≪ Δ, the gas of γ quasiparticles is nondegenerate,
and n̄γ;k ≃ expð−ϵk=kBTÞ ≪ 1 in Eq. (11). By taking the
T → 0 limit at fixedℏcq=kBT and settingAeff

2 ¼ ðℏωq=ρÞf,
where the dimensionless quantity f only depends on angle
cosines, we obtain the equivalent

ℏΓscat
q ∼

T→0
ð2sþ 1Þ e

−Δ=kBT

ð2πÞ9=2
k20q

4c
ρ2

ðm�kBTÞ1=2I; ð12Þ

with I ¼ R
d2Ωk

R
d2Ωq0f2ðu; u0; wÞ an integral over solid

angles of direction k and q0 [14].
One proceeds similarly for the calculation of the damp-

ing rate Γa or e
q of phonons q due to absorption qþ k → k0

or emission k0 → qþ k processes by thermal equilibrium
γ quasiparticles. We obtain

Γa or e
q ¼ 2π

ℏ
ð2sþ 1Þ

Z
d3k
ð2πÞ3 ½A1ðk;q;k0Þ�2

× δðℏωq þ ϵk − ϵk0 Þðn̄γ;k − n̄γ;k0 Þ; ð13Þ
with k0 ¼ kþ q. Low degeneracy of the γ quasiparticles
and energy conservation allow us to write n̄γ;k − n̄γ;k0 ≃
expð−ϵk=kBTÞ=ð1þ n̄b;qÞ. Energy conservation leads here
to a scaling on k different from Eq. (8) as it forces k to be at
a nonzero distance from k0, even in the low-phonon-energy
limit: When q → 0 at fixed k, the Dirac delta in Eq. (13)
becomes

δðℏωq þ ϵk − ϵk0 Þ ∼
q→0

ðℏcqÞ−1δ
�
1 − u

dϵk
dk

ℏc

�
ð14Þ

and imposes that the group velocity ð1=ℏÞðdϵk=dkÞ of the
incoming γ quasiparticle is larger in absolute value than
that, c, of the phonons. This condition, reminiscent of
Landau’s criterion, restricts wave number k to a domain D
not containing k0. In the low-q limit, that is for q much
smaller than the k significantly contributing to Eq. (13), but
with no constraint on the ratio ℏcq=kBT, we write A1 in
Eq. (5) to leading order q1=2 in q, and integrate over the
direction of k, to obtain

Γaore
q ≃ð2sþ1Þρ

4πmc

Z
D

dkk2

jdϵkdk j
e−ϵk=kBT

1þ n̄b;q

����∂ρϵkþ
ℏ2c2k

ρdϵk
dk

����
2

ð15Þ

∼
T→0

ð2sþ 1Þρk2�
4πℏ2mc3

����∂ρϵk� þ
ℏck�
ρη�

����
2 kBTe−ϵk�=kBT

1þ n̄b;q
: ð16Þ

Equation (16) is an equivalent when T → 0 at fixed
ℏcq=kBT; k� is the element of the border of D
(ðdϵk=dkÞjk¼k� ¼ η�ℏc, η� ¼ �) with minimal energy ϵk
(when more than one of such k� exists, one has to sum
their contributions). As ϵk� > Δ, the damping rate due to
scattering dominates the one due to absorption-emission in
the mathematical limit T → 0; we shall see, however, that
this is not always so for typical temperatures in current
experiments.
To be complete, we give a low-temperature equivalent of

the damping rate of the γ quasiparticle k due to interaction
with thermal phonons. With k − k0 ¼ OðT1=2Þ as in Eq. (8),
we find ℏΓγϕ

k ∼ ðπI=42ÞðkBTÞ7=ðℏcρ1=3Þ6, where the factor
2sþ 1 is gone (no summation over σ is needed) but I is the
same angular integral as in Eq. (12). Here scattering
dominates [15]. Using τγ ≃ 1=Γγϕ

k , we checked that the
Figs. 1 and 2 below are in the collisionless regimeωqτγ ≫ 1.
Similarly, we checked that ωqτϕ ≫ 1 on the figures.
Application to helium.—Precise measurements of the

equation of state (relating ρ to pressure) and of the roton
dispersion relation for various pressures were performed in
liquid 4He at low temperature (kBT ≪ mc2;Δ). They give
access to the parameters k0,Δ, their derivatives, andm�. The
measured sound velocities agree with the thermodynamic
relation mc2 ¼ ρðdμ=dρÞ, where μ is the zero-temperature
chemical potential of the liquid.We plot in Fig. 1 the phonon
damping rates Γq as functions of temperature, at fixed
angular frequency ωq. At the chosen high pressure, the
phonondispersion relation is concave at lowq; therefore, the
Beliaev-Landau [16–21] three-phonon process ϕ ↔ ϕϕ is
energetically forbidden and the Landau-Khalatnikov
[1,6,21] process ϕϕ ↔ ϕϕ is dominant. Our high yet
experimentally accessible [22,23] value of ωq leads to
sound attenuation lengths 2c=Γq short enough to be mea-
sured in centimetric cells. As visible on Fig. 1, sound
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damping is actually dominated by four-phonon Landau-
Khalatnikov processes up to temperaturesT ≃ 0.6 K. In this
regime one would directly observe this phonon-phonon
damping mechanism, which would be a premiere. The
sound attenuation measurements of Ref. [24] in helium at
23 bars and ωq ¼ 2π × 1.1 GHz are indeed limited to
T > 0.8 K where damping is still dominated by rotons.
Application to fermions.—In cold-atom Fermi gases,

interactions occur in s wave between opposite-spin atoms.
Of negligible range, they are characterized by the scattering
length a tunable by Feshbach resonance [29–34].
Precise measurements of the fermionic excitation param-

eters k0 and Δ were performed at unitarity a−1 ¼ 0 [35].
Because of the unitary-gas scale invariance [36–38], k0 is
proportional to theFermiwavenumberkF ¼ ð3π2ρÞ1=3,k0 ≃
0.92kF [35], and Δ is proportional to the Fermi energy
ϵF ¼ ℏ2k2F=2m,Δ≃ 0.44ϵF [35]. This also determines their
derivatives with respect to ρ. Similarly, the equation of state
measured at T ¼ 0 is simply μ ¼ ξϵF, where ξ≃ 0.376 [34],
and the critical temperature is Tc ≃ 0.167ϵF=kB [34]. For the
effective mass of the fermionic excitations and their
dispersion relation at nonvanishing k − k0, we must rely
on results of a dimensional ϵ ¼ 4 − d expansion, m�=m≃
0.56 and ϵk ≃ Δþ ½ℏ2ðk2 − k20Þ2=8m�k20� [39].We also trust

Anderson’s RPA prediction [40,41] that the q ¼ 0 third
derivative of the phononic dispersion relation is positive
[42]. The damping rates of phonons with wave number
q ¼ mc=2ℏ are plotted in Fig. 2(a). The contribution of the
three-phonon Landau-Beliaev processes ϕ ↔ ϕϕ, here ener-
getically allowed, is dominant; it is computed in the quantum-
hydrodynamic approximation where it is independent of the
aforementioned third derivative.
The phononic excitation branch becomes concave in the

BCS limitkFa → 0− [43].As visible onFig. 2(b), the phonon-
phonon damping (now governed by the Landau-Khalatnikov
processes mentioned earlier) is much weaker, and dominates
theϕ-γ damping only at very low temperatures. At commonly
reached temperatures T > 0.05ϵF=kB [44], the damping is in
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FIG. 1. Phonon damping rates at angular frequency ωq ¼
2π × 165 GHz (q ¼ 0.3 Å−1) in liquid 4He at pressure P ¼ 20
bar as functions of temperature. Solid line: purely phononic
damping Γϕϕ due to Landau-Khalatnikov four-phonon processes
[1,6,21]; it depends on the curvature parameter γ defined as
ωq ¼ cq½1þ ðγ=8Þðℏq=mcÞ2 þOðq4Þ�. Interpolating measure-
ments of P ↦ γðPÞ in Refs. [25,26] gives γ ¼ −6.9. Dashed
black line [dash-dotted black line]: damping due to scattering
[absorption or emission] by rotons, see Eq. (12) [Eq. (15)]. Red
dashed line: original formula of Ref. [1] for the damping rate due
to phonon-roton scattering. The roton parameters are extracted
from their dispersion relation k ↦ ϵk measured at various
pressures [27]: Δ=kB ¼ 7.44 K, k0 ¼ 2.05 Å−1, m�=m ¼ 0.11,
ρk00=k0 ¼ 0.39, ρΔ0=Δ ¼ −1.64, ρ2Δ00=Δ ¼ −8.03, ρm�0=m� ¼
−4.7. In Eq. (15), parabolic approximation Eq. (9) is used (hence,
ϵk�=Δ≃ 1.43). The speed of sound c ¼ 346.6 m=s, and the
Grüneisen parameter d ln c=d ln ρ ¼ 2.274 entering in Γϕϕ, are
taken from equation of state Eq. (A1) of Ref. [28]. The low values
ℏq=mc ¼ 0.13 and kBT=mc2 < 10−2 justify our use of quantum
hydrodynamics.
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FIG. 2. Phonon damping rates at wave number q ¼ mc=2ℏ
in unpolarized homogeneous cold-atom Fermi gases in thermo-
dynamic limit as functions of temperature. (a) At unitarity
a−1 ¼ 0, where most parameters of the phonons and fermionic
quasiparticles are measured (see text). (b) On the BCS side
1=kFa ¼ −0.389, these parameters are estimated in BCS theory
(μ=ϵF ≃ 0.809, Δ=μ≃ 0.566, m�=m ¼ Δ=2μ, ρμ0=μ≃ 0.602,
ρΔ0=Δ≃ 0.815, ρ2Δ00=Δ≃ −0.209, d ln c=d ln ρ≃ 0.303). In
both cases the curvature parameter γ defined in the caption of
Fig. 1 is estimated in the RPA [42]. Solid line: phonon-phonon
(a) Beliaev-Landau damping ϕ ↔ ϕϕ (for γ > 0) as in Eqs. (121)
and (122) of Ref. [21] (independent of jγj) and (b) Landau-
Khalatnikov damping ϕϕ ↔ ϕϕ (for γ ≃ −0.30 < 0) [6,21].
Dashed line [dash-dotted line]: scattering [absorption or emis-
sion] phonon-fermionic quasiparticle processes, as in Eq. (12)
[Eq. (15)]. In Eq. (15), we took for ϵk (a) the form proposed in
Ref. [39] (hence, ϵk�=Δ≃ 1.12) and (b) the BCS form (hence,
ϵk�=Δ≃ 1.14). μ is the T ¼ 0 gas chemical potential, and the
plotted quantities are in fact inverse quality factors. Here
kBT=mc2 > 0.03 in contrast to Fig. 1 where kBT=mc2 < 0.01:
cold atoms are effectively farther from the T → 0 limit than liquid
helium, hence the inversion of the Γscat

q -Γa or e
q hierarchy.
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fact dominated by absorption-emission ϕ-γ processes which,
unlike in liquid helium, prevail over scattering ones because of
the smaller value of ϵk�=Δ. Although the associated quality
factors ωq=Γq may seem impressive, the mode lifetimes Γ−1

q

do not exceed 1 s in a gas of 6Li with a typical Fermi
temperature TF ¼ 1 μK, which is shorter than what was
observed in a Bose-Einstein condensate [45]. Our predictions,
less quantitative than on Fig. 2(a), are based on the BCS
approximation for the equation of state and the fermionic
excitation dispersion relation ϵk≃ϵBCSk ¼½ðℏ2k2=2m−μÞ2þ
Δ2

BCS�1=2 and on the RPA for the q ¼ 0 third derivative of ωq

(whose precise value matters here). A cutting remark on
Ref. [46]: even in the BCS approximation to which it is
restricted, we disagree with its expression of Γa or e

q .
Conclusion.—By complementing the local density

approximation in Ref. [1] with a systematic low-
temperature expansion, we derived the definitive leading
order expression of the phonon-roton coupling in liquid
helium and we generalized it to the phonon-pair-breaking
excitation coupling in Fermi gases. The ever-improving
experimental technics in these systems give access to
the microscopic parameters determining the coupling and
allow for a verification in the near future. Our result
also clarifies the regime of temperature and interaction
strength in which the purely phononic ϕϕ ↔ ϕϕ Landau-
Khalatnikov sound damping in a superfluid, unobserved to
this day, is dominant.
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