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In the presence of sufficiently strong disorder or quasiperiodic fields, an interacting many-body system
can fail to thermalize and become many-body localized. The associated transition is of particular interest,
since it occurs not only in the ground state but over an extended range of energy densities. So far, theoretical
studies of the transition have focused mainly on the case of true-random disorder. In this work, we
experimentally and numerically investigate the regime close to the many-body localization transition in
quasiperiodic systems. We find slow relaxation of the density imbalance close to the transition, strikingly
similar to the behavior near the transition in true-random systems. This dynamics is found to continuously
slow down upon approaching the transition and allows for an estimate of the transition point. We discuss
possible microscopic origins of these slow dynamics.
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Introduction.—An isolated quantum system of interact-
ing particles can be nonergodic and fail to thermalize in the
presence of sufficiently strong disorder [1–16] or quasi-
periodic fields [13,17,18]. This phenomenon—called
many-body localization (MBL)—presents a generic alter-
native to thermalization [19–21] and has attracted an
immense amount of interest in recent years; see, e.g.,
Refs. [9,10] for reviews. More recently, theoretical studies
started to address the phase transition from the thermalizing
to the MBL phase itself (reviewed in Refs. [22–24]). This
transition is of particular interest, since, in contrast to
conventional quantum phase transitions [25] the MBL
transition happens over a wide range of energy densities.
Furthermore, a good understanding of the transition may
give new insight into thermalization in closed quantum
systems [26].
So far, theoretical studies of the transition have focused

on spin models with true-random disorder, where the
nature of the transition is still under discussion [27].
Renormalization group schemes [28,29] have predicted a
Griffiths regime [30] on the thermal side of the transition. In
this regime, the dynamics is dominated by rare, locally
critical or insulating inclusions in the thermalizing bulk,
resulting in subdiffusive transport and power-law relaxation
of global density patterns. Indeed, exact diagonalization
(ED) studies of small systems have found slow power-law
relaxation processes close to the MBL transition [31–35],
but with scaling behaviors in violation of the Harris-Chayes
criterion [36–38]. This is potentially due to finite size

limitations preventing access to the scaling regime, sug-
gesting that current numerics cannot accurately capture the
properties of the true-random MBL transition [27].
Recently, however, it has been pointed out that finite size
limitations might be less severe in quasiperiodic systems
[39], as rare regions should a priori be absent in a
deterministic potential [40].
In this work, we experimentally and numerically inves-

tigate the MBL transition in a one-dimensional Fermi-
Hubbard model with a quasiperiodic on-site potential. We
find a slow relaxation dynamics of the density imbalance
[13] on the experimentally accessible time scales. These
dynamics continuously slow down upon approaching the
transition before stopping in the MBL phase, a behavior
which is strongly reminiscent of a recent numerical study
on true-random systems [34]. As an important result of the
analysis of the dynamics, we are able to give an improved
estimate of the critical point compared to previous values
[13]. Finally, we discuss possible microscopic explanations
for the observed slow dynamics, including both rare
regions in the initial state [34] and atypical transition rates
between single-particle states [41].
Experiment.—Our experimental setup effectively imple-

ments the interacting Aubry-André model [18,42], which
describes spinful fermions on a lattice with nearest-
neighbor tunneling of amplitude J ≈ h × 500 Hz and on-
site interactions of strength U. The fermions are subjected
to a quasiperiodic correlated disorder potential of the form
Δ cosð2πβiþ ϕÞ, where Δ and ϕ denote the strength and
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relative phase of the potential, i numbers the lattice sites,
and the irrational β gives the disorder periodicity (see
Ref. [43] for details). This model has a localization
transition at ΔU¼0

c ¼ 2J in the absence of interactions
[42], and was shown numerically and experimentally to
exhibit MBL above a critical disorder strength [13].
We prepare a high energy initial charge-density wave

(CDW) state, where up and down spin atoms are randomly
distributed on even lattice sites, while odd lattice sites are
empty. During the preparation, doubly occupied lattice sites
are suppressed by strong repulsive interactions. The CDW
in the central tube is approximately 200 sites long and
contains about 80 atoms. In contrast to previous experi-
ments [13], in this work we only mildly confine the atom
cloud during the ensuing time evolution in order to reduce
the effects of the overall harmonic trapping potential. After
a variable evolution time, we extract the imbalance I ¼
ðNe − NoÞ=ðNe þ NoÞ between the populations of even
(Ne) and odd (No) sites using a band mapping technique
[46]. The imbalance has an initial value close to one and, in
a thermalizing system, will ultimately relax to zero. In
contrast, a finite imbalance indicates a memory of the initial
state and signals that the system has not fully thermalized
yet. Since the imbalance is a local probe and does not
require global mass transport to relax, it exhibits a short
intrinsic relaxation time scale of OðτÞ in the nondisordered
case, where τ ¼ ℏ=J is the tunneling time. This allows for
an experimental observation of slow, disorder induced
dynamics. Global observables, on the other hand, are
expected to show hydrodynamic tails in the ergodic phase
[47], which would mask the slow relaxation processes.
For details of the setup and the experimental sequence,
see Refs. [13,43].
Finite-time imbalance.—Figure 1 shows measurements

of the imbalance at various disorder strengths Δ for both
the noninteracting case and at an interaction strength of
U ¼ 4J. The measurements were taken after 10τ (called
short), which is nonetheless long enough for a clean system
to relax, and after 40τ (called long). In this work, we
generally refrain from accessing imbalances at times longer
than 40τ, since then background decays, which limit the
lifetime of the imbalance to Oð103τÞ, become increasingly
relevant [43,48,49].
From the interacting data we can distinguish three

different regimes, as indicated by the gray background
shading. In the regimes of weak (Δ≲ 1.5J) and strong
(Δ≳ 4J) disorder, the imbalances measured after short and
long times agree up to the effect of background decays
[43,48,49]. The weak disorder regime is thermal, with the
imbalance quickly relaxing to zero. The strong disorder
regime shows many-body localization indicated by a rapid
approach of the imbalance to a finite stationary value.
In the gray shaded regime of intermediate disorder strength
(1.5J ≲ Δ≲ 4J), we observe a significant difference
between the interacting short and long term imbalance,

indicating the presence of relaxation dynamics on a slow
time scale. A similar trend, but much less pronounced,
also exists in the noninteracting case in the vicinity of
ΔU¼0

c . The fact that this regime extends to larger disorder
strengths in the interacting case compared to the non-
interacting case demonstrates that interactions give rise
to an additional relaxation (thermalization) process. This
additional process acts in addition to the critical slowing
down present close to the noninteracting localization
transition and hence shifts the MBL transition point to
larger disorder strengths.
In the following, we present a detailed characterization

of the slow dynamics in the interacting system. The
equivalent analysis of the noninteracting system can be
found in the Supplemental Material [43].
Imbalance time traces.—Wemonitor the dynamics in the

interacting system via the time evolution of the imbalance
for various disorder strengths above the noninteracting
transition [see Fig. 2(a)]. The imbalance is shown on a log-
log plot for times between 3τ and 40τ, which omits the
rapid initial decay from its starting value close to 1 [13].
After initial oscillations have ceased at around 8τ, we
observe slow relaxations of the imbalance, well reproduced
by ED simulations [shown in Fig. 2(a), solid lines], which
model our system on 20 sites [43]. Upon increasing Δ this
relaxation smoothly slows down until, for Δ≳ 4J, the
imbalance remains approximately constant, suggesting that
the system becomes localized.

FIG. 1. Imbalance at finite times. Measurements of the im-
balance I after 10τ (light points) and 40τ (dark points) for the
noninteracting system and at U ¼ 4J. The noninteracting data is
vertically offset by 0.15 for clarity. The data represents averages
over 12 disorder phases ϕ with error bars indicating the
uncertainty of the mean. Solid lines are guides to the eye. In
the interacting system, we observe a regime (gray shaded), where
the imbalance after 40τ is significantly lower than after 10τ,
indicating a dynamical evolution of the system. A similar, but
much less pronounced, feature is also present in the noninteract-
ing case.
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This dynamics in the quasiperiodic potential is reminis-
cent of the dynamics computed in numerical studies of true-
random spin models [34]. In the true-random spin models,
slow relaxation, which takes the form of power laws, has
been argued to result from rare, locally critical, or insulat-
ing regions immersed in an otherwise thermal system
[28,29]. However, the deterministic quasiperiodic potential
in our system does not allow for such rare regions, raising
the question of the microscopic mechanism and the func-
tional form of the observed decays.
Figure 2(b) shows the time trace at Δ ¼ 2.5J, to slightly

longer evolution times of up to 100τ. The data is presented
on a lin-log (left panel) and a log-log (right panel) plot
together with an exponential (red line) and a power-law
(yellow line) fit to the experimental data. We find that the
power-law fit describes the data slightly better than the
exponential fit (see Ref. [43] for fit residuals), a trend that is
more pronounced in the numerical simulations. We attrib-
ute this difference to the background decay, present only in
the experiment, which always contributes an exponential
decay component, potentially altering the actual functional

form. The numerical result is also consistent with a recent
numerical study on spin models with quasiperiodic poten-
tials [50], which also finds imbalance decays that are well
described by power laws on intermediate time scales.
Relaxation exponent.—Motivated by the above analysis

and the similarity to true-random systems [34], we char-
acterize the observed decays via power laws IðtÞ ∼ t−α.
The exponents α are extracted using linear fits of logðIÞ
versus logðtÞ between 8τ and 40τ to the experimental data.
Figure 3 shows the experimental values in very good
agreement with the results of ED simulations, where we
choose a fitting range of 20τ and 80τ, as initial oscillations
in the imbalance cease slower than in the experiment and
affect the fitted exponent [43]. Above the single-particle
localization transition at ΔU¼0

c ¼ 2J, we observe that α
decreases monotonously until the experimental values
saturate at a nonzero offset αo. This offset is consistent
with the expected effect of background decays in our
system [43,48,49], suggesting that α could indeed vanish in
an isolated system. This suggests that the closed-system
dynamics indeed smoothly changes from slow decays to a
stationary finite imbalance at the MBL transition. We note
though, that even in the MBL phase there may be a regime
of slow, possibly logarithmic relaxation towards the sta-
tionary value of the imbalance [51], potentially contributing
to a finite effective value of αo.

(a)

(b)

FIG. 2. Time evolution of the imbalance close to the MBL
transition. Decay of an initially prepared charge-density wave at a
fixed interaction strength of U ¼ 4J. Points mark experimental
data, averaged over six disorder phases ϕ, with error bars
indicating the uncertainty of the mean. The corresponding ED
simulations for S ¼ 20 sites [43] are indicated as solid lines.
During the first three tunneling times (not shown), the imbalance
quickly decays from its initial value close to 1. During this initial
decay, the imbalance shows strong oscillations, which cease after
∼8τ. Thereafter, we observe a much slower further decay.
(a) Time traces for various disorder strengths with power-law
fits. (b) Long term decay at intermediate disorder strengths on a
logarithmic y axis with an exponential fit (left) and on a double-
log plot with a power-law fit (right).

FIG. 3. Power-law exponent of imbalance decay. Experimental
and theoretical (ED, S ¼ 20, see Ref. [43]) fitted exponents α as a
function of disorder strength Δ at a fixed interaction strength of
U ¼ 4J. Error bars indicate the uncertainty of the fit to the
experimental data. The purple shading denotes an estimate of the
uncertainty on the simulated exponents based on finite size
effects. For the largest disorder strengths, systematic errors due to
finite time and size do not allow an accurate estimation of α and
the actual uncertainty is likely underestimated [43]. The gray
shading marks the regime of slow dynamics as observed in Fig 1.
At large disorder strengths, the experimental value saturates at a
nonzero offset αo, consistent with the independently observed
background lifetime [43,48,49]. The finite value of α in ED for
large disorder strength is likely caused by finite size effects. The
corresponding exponents for the noninteracting data can be found
in the Supplemental Material [43].
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As in Ref. [34], the exponents can be used to estimate the
location of the MBL critical point as the disorder strength
where the exponent becomes zero. In the experiment,
however, this behavior is masked by the offset in the
exponent resulting from the coupling to external baths. As
the effects of external baths on the power-law exponents
(i.e., whether external decays result in a simple offset or a
more complicated interplay) remain unclear, this prevents
an accurate determination of ΔMBL

c . However, the disorder
strength where the exponents become compatible with
the background decay does serve as a lower bound of
ΔMBL

c ≳ 3.8� 0.5J. The numerical results for small system
sizes indicate that the actual critical disorder strength might
be located at larger lattice depths and a simple linear
extrapolation of the exponents gives a best guess for the
critical disorder strength of ΔMBL

c ≈ 4.3� 0.5J. Previously
performed DMRG for the localized phase suggest an upper
bound for the MBL transition of ΔMBL

c ≲ 5J [52]. For
completeness, we also performed an equivalent analysis of
the slow dynamics using exponential decays [43]. While
the individual fits are not quite as good as the power-law
fits, similar bounds on the critical disorder strength can be
obtained, further showing that the slowing down of the
dynamics is a generic feature that captures the MBL
transition in our system.
The lower bound for the transition exceeds the estimate

of previous experimental work of ΔMBL
c ≈ 2.5J [13]. This

value was extracted based on a finite-time measurement of
the imbalance, a method that can become problematic in the
presence of increasingly slow dynamics. The analysis
based on the relaxation exponents given here takes into
account the full dynamical evolution of the system and,
hence, gives an improved estimate of the critical disorder
strength.
The presented estimates of the critical point locate the

MBL transition near the upper edge of the intermediate
regime of slow dynamics in Fig. 1. We note, that the upper
edge of the noninteracting intermediate regime in Fig. 1
would slightly overestimate the known critical point of
ΔU¼0

c ¼ 2J [42], as it neglects the initial dynamics on the
localized side. Such a dynamics would, however, be much
slower and possibly logarithmic in the MBL phase [51],
and might, therefore, be masked by the background decay
in the experiment.
Discussion.—We have experimentally observed a slow,

interaction-induced relaxation dynamics close to the MBL
phase transition in the interacting Aubry-André model, in
very good agreement with ED simulations. Specifically, we
observe that the relaxation of an initial charge-density wave
continuously slows down when approaching the MBL
transition. On the experimentally accessible time scales,
the decays are consistent with power laws whose exponents
α smoothly vanish at the transition, thereby allowing for an
estimation of the critical disorder strength based on the
dynamics.

As the dynamics observed in this experiment behave
very similar to those found in numerical studies of true-
random systems [28,29,31–34], it is tempting to speculate
whether the two systems share a common mechanism
that underlies the slow dynamics. However, the Griffiths
mechanism suggested to cause power-law dynamics in
true-random systems [28,29] cannot apply to quasiperiodic
systems, as rare regions in the disorder pattern cannot exist
in a deterministic potential. Given the wide regime of
subdiffusive dynamics calculated in systems with true-
random disorder [34,35], it is nonetheless possible that
additional mechanisms are also at play in generating slow
dynamics there. It was suggested that one such mechanism
could be strong local fluctuations in the initial state [34],
which are also present in our system. For instance, a region
containing only one spin species would initially be non-
interacting and, hence, insulating once the single-particle
localization length is smaller than its size. The slow
thermalization of such rare regions via their surroundings
could give rise to power-law relaxation on intermediate
time scales. On longer time scales, however, thermalization
ultimately removes such regions and accelerates the imbal-
ance relaxation. The melting of rare regions in the initial
state might be further enhanced by the delocalized spin
dynamics in our SU(2) symmetric system [53–55].
Our results are consistent with two recent numerical

studies on quasiperiodic systems that also find power-law
decays of the imbalance on intermediate time scales [50]
and subdiffusive transport [41]. However, those properties
have been found to exist also in the absence of randomness
in the initial state, suggesting that rare regions in the initial
state are at least not the sole cause of the slow dynamics.
Instead, a further mechanism was proposed based on
atypical transition rates between single-particle states [41].
A similar mechanism was also suggested to explain the

subdiffusive spreading of bosonic atoms in a quasiperiodic
geometry observed in a previous experiment [56], which
was performed in the absence of lattices along the orthogo-
nal directions. Since this experiment was performed at a
disorder strength where our system would appear localized,
the dynamics likely emerged due to the bathlike effects of
the delocalized orthogonal dimensions.
Our experimental and numerical results cannot distin-

guish which mechanism is relevant to the observed dynam-
ics. The origin and exact functional shape of the slow
dynamics pose an interesting open problem for future
studies. Experimentally, future studies could address the
problem of a finite bath coupling via a systematic analysis
of its effects [49], allowing for a further improvement in the
determination of the transition point and potentially ena-
bling access to the universal scaling regime.
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