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Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky
reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-
diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced
drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll
waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of
strong external fields or meandering motion close to resonance, however, phase locking of the meander
pattern is predicted and observed.
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Introduction.—Rotating spiral waves are remarkable
patterns that spontaneously occur in many spatially
extended systems [1–8]. In many cases, a quasiperiodic
motion of the wave pattern instead of rigid-body rotation
can be recognized from the star- or flowerlike tip trajectory,
shown by red traces in Fig. 1. These are called “meandering
spiral waves” or “modulated rotating waves” [9,10] and are
observed in the Belousov-Zhabotinsky chemical reaction
[11,12], and in cardiac tissue experiments [8,13] and
numerical simulations [14–18].
The understanding of the excitation patterns exhibited by

circular-core spirals in 2D, and scroll waves in 3D, has
much benefited from the analysis of their motion in terms
of “phase singularities,” i.e., instantaneous rotation centers
for the spirals, Fig. 1, and “filaments,” Fig. 2, for the scrolls
[19–21]. Much of the theory of meandering spiral waves
has been focusing on the origin of the meander bifurcation
[10,22–24], which produces epi- or hypocyclodial motion
of a spiral tip, as shown in Fig. 1(a). However, meandering
spirals with “linear” cores, as in Fig. 1(b), may be the
building blocks of ventricular fibrillation, which motivated
recent work to calculate their leading eigenmodes [25–27].
In this Letter, we derive equations of motion for biperiodic
meandering 2D spirals and 3D scroll waves, without
restriction to a particular shape of meander.
In 3D, it has been shown that the filament of a circular-

core scroll wave is characterized by its “tension” γ1, which
depends on the medium parameters: γ1 < 0 leads to ever-
growing filaments [20,28] if the medium is thick enough
[29], resulting in a turbulent, fibrillationlike state, while

γ1 > 0 leads to the shrinking of scroll rings, so that only
filaments connecting opposite medium boundaries persist.
Figure 2 shows similar behavior for meandering scroll
waves. However, the applicability of the concept of
filament tension to meandering scrolls has so far been a
conjecture rather than fact. In this Letter, we will show
when this is indeed true, and when it is not.
Methods.—We investigate spiral-shaped solutions to the

reaction-diffusion system in two and three spatial dimen-
sions under a small spatiotemporal perturbation h:

∂tuðr⃗; tÞ ¼ PΔuðr⃗; tÞ þ F(uðr⃗; tÞ)þ hðr⃗; tÞ; ð1Þ

where u is a column matrix of state variables. Equation (1)
describes bothBelousov-Zhabotinsky-like chemical systems
and models of cardiac tissue, depending on the choice of the
diffusion constants P and reaction kinetics FðuÞ. We con-
sider two different kinetics models: the Barkley model [30],
u ¼ ½u; v�T , F ¼ fc−1uð1 − uÞ½u − ðvþ b=aÞ�; u − vgT ,
P ¼ diagð1; 0Þ, a ¼ 0.58, b ¼ 0.05, c ¼ 0.02, Fig. 1(a),

FIG. 1. Meandering spiral wave, with current tip position
(white) and upcoming tip trajectory (red) for Barkley (a) and
Fenton-Karma (b) kinetics. Successive “petals” (blue) are
reached after time T and span the angle χ.
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and the Fenton-Karma (FK) cardiac tissue model with
guinea pig parameters [17], where u ¼ ½u; v; w�T , P ¼
diagð0.1; 0; 0Þ mm2=ms, Fig. 1(b).
Before presenting our formalism, we recall the classical

view on meander in terms of the transition of an unper-
turbed (h ¼ 0) spiral from rigid to biperiodic rotation via an
equivariant Hopf bifurcation [10,22–24,31]. Let ωs be the
angular velocity of a rigidly rotating spiral. In a frame of
reference rotating with ωs, this spiral is a stationary
solution. The corresponding linearized problem always
has eigenvalues on the imaginary axis, due to the rotational
(λR ¼ 0) and translational (λT ¼ �iωs) Euclidean sym-
metry of the plane. If under a parameter change another pair
of eigenvalues crosses the imaginary axis at λH ¼ �iΩ, the
solution becomes time periodic with period T ¼ 2π=Ω in
the rotating frame. The progression of the solution along
this cycle can be labeled by the meander phase ψ ; by
definition, in the absence of perturbation, ∂tψ ¼ Ω.
To describe meandering spirals without relying on the

proximity of the Hopf bifurcation, we note that in the lab
frame, a meandering spiral is a relative periodic orbit,
meaning that after the time T the solution returns to the
same state up to an orientation-preserving isometry M of
the plane [10,23,32,33]. Except for the resonant case,
which falls outside our present scope, M is a rotation
by an angle χ around a point C. After iteratingM, the point
C emerges as the center of the meander pattern, see Fig. 1.
By construction, χ is defined up to an integer number of full
rotations. In terms of the classical approach, we can write
χ ¼ ωsT þ 2πn, for n ∈ N. For our formalism, the exact
choice of χ is not of principal importance. We find it
convenient to demand jχj < π, and define χ as the (small-
est) angle between consecutive petals of the tip path, see
Fig. 1. Correspondingly, we consider a frame of reference
rotating around C with ω ¼ χ=T, in which the solution is
also T periodic. As before, we define Ω ¼ 2π=T and

∂tψ ¼ Ω. Note that this formalism equally holds for both
cases shown in Fig. 1.
Let the angle ϕðtÞ characterize the orientation of the

steadily rotating frame (Fig. 1); by definition ∂tϕ ¼ ω for the
unperturbed spiral. The transformationbetween the lab frame
coordinates xa and the rotating frame coordinates ρA is then
ρA ¼ RA

aðϕÞðxa − XaÞ, where RA
aðϕÞ is the rotation matrix

over an angle ϕ. In the rotating frame, Eq. (1) becomes

∂τu ¼ PΔuþ ω∂θuþ FðuÞ: ð2Þ
Here, τ is the time in that frame, Δ is the Laplacian in the
ðρ1; ρ2Þ plane, and θ is the polar angle in it, i.e., ∂θ¼ϵBAρ

A∂B.
The unperturbed meandering spiral wave solution
u0ðρ1; ρ2;ψÞ to Eq. (2) is 2π periodic in ψ and satisfies

PΔu0 þ ω∂θu0 −Ω∂ψu0 þ Fðu0Þ ¼ 0: ð3Þ
In what follows, we perform a standard perturbation

technique used before to derive drift laws for circular-core
spiral and scroll waves [19,20,34,35]. This involves lin-
earization of Eq. (3) on u0, after which the drift caused by a
perturbation h will be given by its projection onto the
symmetry eigenmodes.
The linear operator L̂ associated with Eq. (3) is

L̂ ¼ L̂ −Ω∂ψ ; L̂ ¼ PΔþ ω∂θ þ F0ðu0Þ: ð4Þ
The operator L̂ is the same as used for the circular-core case
[19,20,35,36]. By differentiating Eq. (3) with respect to
ρ1; ρ2; θ, and ψ , we find the four critical eigenmodes:
V�¼−1

2
ð∂1u0�i∂2u0Þ, Vψ¼−∂ψu0, Vϕ ¼ −∂θu0, where

L̂V�¼�iωV�, L̂Vψ¼0, L̂Vϕ¼0. Modes V� correspond
to translations, Vϕ to rotations, and Vψ to shifts in time.
To perform projections onto the symmetry modes, we

use the inner products

hfjgi¼
ZZ

R2

fHgdρ1dρ2; ⟪fjg⟫¼
Z

2π

0
hfjgidψ

2π
: ð5Þ

The projectorsWM, also called “response functions” (RFs)
in this context [37], are the critical eigenfunctions of the
adjoint operator L̂†,

L̂† ¼ L̂† þ Ω∂ψ ; L̂† ¼ PHΔ − ω∂θ þ F0Hðu0Þ; ð6Þ
such that L̂W� ¼∓ iωW�, L̂Wψ ¼ 0, L̂Wϕ ¼ 0. They
are 2π periodic in ψ , and can be normalized as

⟪WMjVN⟫ ¼ δMN ; M;N ∈ fþ;−;ϕ;ψg: ð7Þ
The biorthogonality property (7) is not practical since it
involves averaging over ψ. However, although generally an
inner product hfjgi depends on ψ , for products of eigen-
functions of L̂ the following Meander lemma holds (see
also Refs. [26,33]):

hWMjVNi ¼ δMN ∀ ψ ; M;N ∈ fþ;−;ϕ;ψg: ð8Þ

FIG. 2. Meandering 3D scroll wave evolved from a nearly
straight scroll (initial filament shown in black), showing the tip
trajectory on the bottom surface, current wave front (blue), wave
back (yellow), and filament (red). (a) For Barkley kinetics, at
t ¼ 30 the filament buckles and subsequently breaks up. (b) In
the FK model (t ¼ 950 ms), the filament straightens.
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Indeed,

Ω∂ψ hWMjVNi
¼ hðL̂† − L̂†ÞWMjVNi þ hWMjðL̂ − L̂ÞVNi
¼ ðλN − λMÞhWMjVNi: ð9Þ

If λM ¼ λN , hWMjVNi is constant and equal to⟪WMjVN⟫ ¼
δMN . If λM ≠ λN , hWMjVNiðψÞ ¼ AM

N exp½ðλN − λMÞψ=Ω�.
Since this is 2π periodic, iðλN − λMÞ=Ω needs to be an
integer. However, in the nonresonant case we have
0 < jχj < π, whence 0 < jω=Ωj < 1=2. For the critical
modes, ðλN − λMÞ=Ω thus cannot be an integer, and therefore
AM
N ¼ 0 and hWMjVNi ¼ 0. □

As a corollary, the instant orthogonality (8) also holds for
the Cartesian basis of eigenfunctions, i.e., M;N ∈
fρ1; ρ2;ϕ;ψg and pairs of a critical and noncritical mode.
Results.—We are now ready to calculate how a small

perturbation h, say of order η, induces spiral wave drift.
Still in 2D, we decompose the exact solution to (2) as

uðρA; τÞ ¼ u0(ρ
A;ψðτÞ)þ ~uðρA; τÞ; ð10Þ

where ~u ¼ OðηÞ is made unique at all times by the
condition hWMj ~ui ¼ 0 [35]. Then, we let the frame move
with yet unknown perturbed velocities:

∂tXA ¼ ~vA; ∂tψ ¼Ωþ ~vψ ; ∂tϕ¼ωþ ~vθ; ð11Þ
where ~vM ¼ OðηÞ. Inserting these into Eq. (2) yields

ð∂τ − L̂Þ ~u −
X

M¼ρ1;ρ2;θ;ψ

~vM∂Mu0 ¼ hþOðη2Þ: ð12Þ

Finally, projection onto the RFs delivers

_XM ¼ vM þ hWMjhi þOðη2Þ ð13Þ
for M ∈ f1; 2;ϕ;ψg, where vψ ¼ Ω, vϕ ¼ ω, and vA ¼ 0.
The equation of motion (13) describes the spatial drift of

the position X1, X2 of the center of the meander pattern, its
orientation ϕ in the plane, and the meander phase ψ of the
spiral. It is a fundamental result in this Letter, as it captures
the generic drift response of a meandering spiral wave to
small external disturbances hðr⃗; tÞ. Its form was stated
before based on symmetry for particular cases of h
[24,32,38,39], but without the overlap integral that is
necessary to quantitatively predict spiral wave drift.
In this Letter we choose to further study

h ¼ QE⃗ ·∇u; ð14Þ
which has several applications. For example, in chemical
systems, u is a vector of concentrations of reagents, and
Eqs. (1) and (14) may describe the “electrophoretic” drift of
spiral waves in a constant electrical field E⃗, if Q is the
diagonal matrix of electrical mobilities of the reagents.
More generically, in any reaction-diffusion system describ-
ing 3D scroll waves, one can show that the effect of

diffusion in three dimensions boils down to a perturbation
of the form of Eq. (14), with Q ¼ P and E⃗ ¼ kN⃗, where k
is the geometrical curvature of the scroll wave filament (i.e.,
the 3D extension of the rotation centers C) and N⃗ is the
local normal vector to it [19].
The resulting spiral and scroll wave dynamics can for

both applications mentioned above be found by substituting
Eq. (14) into the general law of motion (13). Here, we will
assume that the RFsWM are essentially localized (as shown
numerically in Refs. [25–27]) within an area of size d and
that the spatial scale over which the fields E⃗ vary is larger
than d. In the lab frame of reference, this delivers

∂tϕ ¼ ωþQϕ
AðψÞRA

aðϕÞEa;

∂tψ ¼ ΩþQψ
AðψÞRA

aðϕÞEa;

∂tXb ¼ Rb
BðϕÞQB

AðψÞRA
aðϕÞEa ð15Þ

with QM
A ¼ hWMjQj∂Au0i. In the case where E⃗ ¼ kN⃗,

Q ¼ P, system (15) describes the evolution of the scroll
wave filament position Xb in every plane locally orthogonal
to the filament. We have thus generalized Keener’s law of
motion [19]. The main difference is that the coefficientsQM

A
depend on the meander phase ψ .
The law of motion (15) can be simplified considerably

by averaging it over several meander periods. This is most
easily seen using Fourier series:

QM
A ðψÞ ¼

X
k∈Z

KQM
A e

ikψ ;

RA
aðϕÞ ¼

1

2
ðδAa þ iϵAaÞeiϕ þ c:c:; ð16Þ

where c.c. is the complex conjugate.
The dynamics of the center of the meander flower in each

cross section perpendicular to the filament is then

∂tXb ¼
X2
l¼−2

X
k∈Z

Fb
l;ke

ilϕeikψ þOðE2Þ: ð17Þ

We note that unless in resonance the set fjlωþ kΩjjl ∈
f0;�1;�2g; k ∈ Zg has a strictly positive minimal
element, say ωmin. Then, all nonconstant terms in
Eq. (17) will oscillate at a frequency of at least ωmin.
However, the sole constant term Fb

0;0 in the right-hand
side of Eq. (17) will induce a constant drift velocity:

Fb
0;0 ¼ 0QB

A
Ea

4
ðδbB þ iϵbBÞðδAa þ iϵAaÞ þ c:c:

¼ 1

2
QA

AE
b þ 1

2
ϵABQ

B
Aϵ

b
aEa: ð18Þ

In vector notation, this result can be written as

V⃗ ¼ Γ1E⃗þ Γ2T⃗ × E⃗; ð19Þ
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where V⃗ is the net drift motion of the filament, T⃗ is the unit

tangent to the filament for 3D scroll waves, and T⃗ ¼ e⃗z for
2D spiral waves in the XY plane. From Eq. (18), the drift
components parallel and perpendicular to the applied
external field E⃗ are given by

Γ1 ¼ QA
A ¼ 1

2
⟪WAjQj∂Au0⟫;

Γ2 ¼
1

2
ϵABQ

B
A ¼ ϵAB

2
⟪WBjQj∂Au0⟫: ð20Þ

The time-averaged equation of motion for meandering
spiral waves (19) exhibits the same dynamics as in the
circular-core case. If h describes diffusive coupling in the
third spatial dimension (E⃗ ¼ kN⃗,Q ¼ P), Eq. (19) happens
to reduce to the circular-core result from Ref. [20]:

V⃗ ¼ Γ1kN⃗ þ Γ2kB⃗; ð21Þ
where N⃗ and B⃗ are the normal and binormal vectors to the
filament. Then, we can interpret Γ1 and Γ2 as the scalar and
pseudoscalar filament tension. Since Eqs. (19) are the laws
of motion for the filament of a meandering scroll wave, it
follows from Ref. [20] that the period-averaged filament
length increases monotonically in time if Γ1 < 0 and
decreases if Γ1 > 0.
To validate our results, we have determined the coef-

ficients PM
A ðψÞ for the Barkley and FK kinetics by applying

E⃗ for a short time interval at different values of the meander
phase ψ , see Sec. B of the Supplemental Material [40] for
details of the numerics. Averaging PB

AðψÞ over one period
delivered Γ1 ¼ −3.97, Γ2 ¼ 0.70 for Barkley kinetics and
Γ1 ¼ 0.455, Γ2 ¼ 0.302 for FK kinetics. Theoretical pre-
dictions (19) and (21) using the measured Γ1;2 are in good
agreement with the observed drift of spirals in a constant
field E, and with circular scroll ring dynamics, see Fig. 3.
Since the chosen parameters in Barkley kinetics yield

Γ1 < 0, the filament will undergo Euler buckling beyond a
critical thickness, as we have already seen in Fig. 2(a). The
FKmodel has Γ1 > 0, and Fig. 2(b) shows that a transmural
filament indeed relaxes to the minimal length.
Until now, it was assumed that perturbations are small

and ω is not. As noted already in Refs. [39,41], if either

condition is broken, phase-locking between spiral rotation
and its meandering may happen. We are now in a position
to describe this phenomenon quantitatively. For Barkley
kinetics as in Fig. 1(a) where ω ¼ 0.08 ≪ Ω ¼ 1.25, one
finds a qualitatively different tip trajectory when E ¼
jE⃗j ≥ 0.04, see Fig. 4(a). From the first of Eqs. (15),
one can show similarly to Ref. [42] that a necessary
condition for locking the rotation phase is

E > Ecrit ¼ ω=Q; Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQϕ

1 Þ2 þ ðQϕ
2 Þ2

q
: ð22Þ

The locked rotation angle will be ϕl ¼ arccos ð−ω=QÞ−
arctan ðQϕ

2=Q
ϕ
1 Þ. Given the computed Qϕ

A, expression (22)
predicts Ecrit ¼ 0.041, closely matching the value of 0.04
found in Fig. 4(a). Figure 4(b) shows a comparison for
different values of the parameter a; it can be seen that the
Arnold tongue for phase-locking is well described by
Eqs. (22).
In the ða; bÞ parameter space of Barkley’s model, phase-

locking is found near the line of resonant meander. Already
for a field strength of E ¼ 0.03, Fig. 4(c) shows phase-
locking in a significant portion of the meander region, where
it leads to relatively large drift velocities [see Fig. 4(d)]. In
qualitative terms, Fig. 4(a) shows that the meander flower
opens up during phase-locking, and the resulting drift speed
is therefore close to the mean “orbital velocity”ωR of the tip
along the meander flower, where R is the time-averaged
radius of the meander flower. This result does not contradict
Eq. (15) sincewhenω → 0, the center of the rotating frame is
far away. One can instead use a different rotating frame, with
the origin shifted to the average tip position. This gives, in
leading order,

FIG. 3. Comparison of drift velocity components with theory,
in the Barkley (a) and FK model (b). “3D” refers to a scroll ring
simulation with h ¼ Pð1=rÞ∂ru.

FIG. 4. Phase-locking in Barkley’s model. (a) Drift trajectories
with E⃗ ¼ Ee⃗x for parameters as in Fig. 1(a), showing phase-
locking when E > 0.04. (b) Arnold tongue confirming the
theoretical prediction in Eq. (22). (c) Occurrence of phase-
locking for E ¼ 0.03 in (a),(b) parameter space with c ¼ 0.02.
(d) Drift components parallel and perpendicular to E, for
b ¼ 0.05. The colored background indicates meander.
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V∥ðEÞ¼ωRcos½ϕlðEÞ�; V⊥ðEÞ¼ωRsin½ϕlðEÞ�: ð23Þ

We noted that the curve V∥ ¼ 0 closely matches the locus of
resonant meander. We have however not found analytical
proof of this property, and a counterexample in the Luo-
Rudy-I cardiac tissue model is known [43].
Discussion.—One motivation for this work was to see

how the concept of filament tension generalizes to meander-
ing scroll waves. Only when averaged over many meander
periods does the dynamics reduce to the circular-core case.
The tension concept has already been used for meander in
cardiological literature [13] and modeling studies [43].
Here, we have shown that the emerging property of filament
tension does indeed explain the (in)stability of scroll waves
in simple cases, such as those in Fig. 2. Real heart tissue is
more complicated in many respects. For instance, a sig-
nificant phenomenon is pinning to heterogeneities. Some
pinning effects have been described before using perturba-
tion methods [44–46]. Thin domains of irregular thickness
Lðx; yÞ (e.g., the cardiac wall) can also be captured by
Eq. (15), with h ¼ P∇ lnL [46].
On short time scales, the dynamics is much more

complex and the concept of filament tension cannot be
applied. The orientation of the meander pattern may phase-
lock to external fields, and thickness or parameter gradients.
In general, the theory that was presented here opens the

pathway to analyzing and predicting the trajectory and
stability of meandering spiral and scroll waves in reaction-
diffusion media of diverse nature.
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