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We provide a new perspective on fracton topological phases, a class of three-dimensional topologically
ordered phases with unconventional fractionalized excitations that are either completely immobile or only
mobile along particular lines or planes. We demonstrate that a wide range of these fracton phases can be
constructed by strongly coupling mutually intersecting spin chains and explain via a concrete example how
such a coupled-spin-chain construction illuminates the generic properties of a fracton phase. In particular,
we describe a systematic translation from each coupled-spin-chain construction into a parton construction
where the partons correspond to the excitations that are mobile along lines. Remarkably, our construction of
fracton phases is inherently based on spin models involving only two-spin interactions and thus brings us
closer to their experimental realization.
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One of the most striking features of topologically
ordered phases in two dimensions is the existence of
quasiparticle excitations with fractional quantum numbers
and fractional exchange statistics [1]. In three dimensions,
this fractionalization attains an even more exotic character
and has proven to be a vast and exciting frontier. For
example, there are looplike excitations in addition to
pointlike excitations, and the intricate braiding patterns
exhibited by these looplike excitations are essential for
characterizing the topological order [2,3].
Fracton topological phases are topologically ordered

phases in three dimensions with a particularly extreme
form of fractionalization [4–9]. In these phases, there are
pointlike excitations that are either completely immobile or
only mobile in a lower-dimensional subsystem, such as an
appropriate line or plane. Remarkably, the restricted mobil-
ity of excitations has a purely topological origin and
appears in translation-invariant systems without any dis-
order. In addition to being of fundamental interest from the
perspective of topological phases, and providing an excit-
ing disorder-free alternative to many-body localization
[10,11], this phenomenology has important implications
for quantum-information storage. Indeed, the immobility of
excitations makes encoded quantum information more
stable at finite temperature than in conventional topologi-
cally ordered phases [12,13].
In recent years, several different viewpoints have been

presented on fracton topological phases. From a purely
conceptual perspective, fracton phases can be understood
by gauging classical spin models with particular subsystem
symmetries [14,15] or in terms of generalized parton con-
structions with overlapping directional gauge constraints
and/or interacting parton Hamiltonians [16]. While these
approaches can be used to understand the generic properties
of fracton phases, the concrete spin models they provide are
far from realistic as they involve interactions between many

spins at the same time. From a more practical perspective,
fracton phases can be constructed by coupling orthogonal
stacks of two-dimensional topologically ordered layers
[17,18]. This approach can lead tomore realistic spinmodels
involving only two-spin interactions [19], although it is not
immediately clear what kind of fracton phase is obtained
from a generic construction.
In this Letter, we provide an understanding of fracton

topological phases in terms of coupled spin chains and,
along with it, a systematic route to construct realistic spin
models hosting such fracton phases. This coupled-spin-
chain construction is useful for three main reasons. First,
like all coupled-chain (i.e., coupled-wire) constructions, it
decomposes the system into its most basic building blocks,
and dealing directly with these building blocks offers
significant versatility in describing a rich variety of fracton
phases. Second, the coupled-spin-chain constructions
directly translate into generalized parton constructions,
and the generic properties of the corresponding fracton
phases can then be readily understood. For example, one
can immediately identify the excitations with restricted
mobility and their respective lower-dimensional subsys-
tems (i.e., lines or planes). Third, the coupled-spin-chain
constructions naturally give rise to fracton spin models
involving only two-spin interactions, which are more
amenable to a potential experimental implementation.
Fracton spin model.—Our coupled-spin-chain construc-

tion works for any 4n-coordinated (n ≥ 2) lattice with 2n
spin-one-half degrees of freedom per site. For concreteness,
however, we concentrate on the eight-coordinated (n ¼ 2)
body-centered-cubic (bcc) lattice, which is characterized by
the (conventional) cubic lattice vectors a1;2;3 and the
nearest-neighbor bond vectors b1;2;3;4 [see Fig. 1(a)].
In the concrete model, there are four spins σr;j with

flavors j ¼ 1, 2, 3, 4 at each site r of the bcc lattice, and the
Hamiltonian in terms of these spins reads
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H ¼ −J
X
j

X
hr;r0ij

σxr;jσ
y
r0;j − λJ

X
r

X
hj;j0i

σzr;jσ
z
r;j0 ; ð1Þ

where hj; j0i implies a summation over all pairs of spins at
the same site, and hr; r0ij implies a summation over all j
bonds (j ¼ 1, 2, 3, 4) such that the arrow in Fig. 1(a) points
from r to r0 at each bond. The first (nearest-neighbor) term
describes decoupled spin chains of the four spin flavors
along the h111i directions traced out by strings of the four
corresponding bond types, while the second (on-site) term
introduces a coupling between spin chains of distinct spin
flavors intersecting at any site. Note that the individual
(decoupled) spin chains are both critical and macroscop-
ically degenerate.
In the strong-coupling regime (λ ≫ 1), the four spins σr;j

at each site r are locked together by the on-site terms, and
thus σzr;j ¼ σzr;j0 for all j and j0. The local Hilbert space is
then captured by a single effective spin Σr as its two states
can be characterized by Σz

r ¼ σzr;j ¼ �1. For λ → ∞, these
degenerate local states give rise to an exponentially large
ground-state degeneracy. However, if λ is finite, the nearest-
neighbor terms select particular superpositions of these
ground states by inducing a low-energy Hamiltonian within
the ground-state subspace in terms of the effective spin
components

Xr ≡ Σx
r ¼ σxr;1σ

x
r;2σ

x
r;3σ

x
r;4 ¼ −σyr;1σ

y
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x
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Yr ≡ Σy
r ¼ σyr;1σ
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y
r;2σ

x
r;3σ

x
r;4 ¼ …;

Zr ≡ Σz
r ¼ σzr;1 ¼ σzr;2 ¼ σzr;3 ¼ σzr;4: ð2Þ

For our bcc model in Eq. (1), the lowest-order nontrivial
Hamiltonian term Wr arises at order 32 in degenerate

perturbation theory (see the Supplemental Material [20])
and is a product of 14 effective spin operators [see
Fig. 1(b)]. Ignoring any trivial (i.e., constant) terms, the
effective Hamiltonian at this order is then ~H ¼ P

rWr,
where

Wr ∼
J
λ31

Y
�
Xr�a1Xr�a2Xr�a3Yr�b1

Yr�b2
Yr�b3

Yr�b4
: ð3Þ

Since ½Wr;Wr0 � ¼ 0 for all r and r0, the Hamiltonian ~H
corresponds to a commuting-projector model, where each
eigenstate is characterized by Wr ¼ �1. Furthermore, the
only nontrivial terms arising at higher orders of perturba-
tion theory are products of Wr, and this commuting-
projector model thus captures an entire strong-coupling
phase λ > λC above a critical coupling strength λC.
This strong-coupling phase of the model in Eq. (1) is

identified as a type-I fracton phase [14], which is charac-
terized by the following (closely related) features. First of
all, there is a ground-state degeneracy that scales as
∼2L with the linear system dimension L due to the planar
conservation laws

Q
r∈f110gWr ¼ const within the f110g

planes of the lattice [21]. For a product
Q

r∈R⊂f110gWr

within a finite region R of a f110g plane, the boundary of
the region then corresponds to a string logical operator,
and the excitations at the end points of such a string ∂R are
only mobile within the given f110g plane. Moreover, there
is a string logical operator

Q
r∈AZr along each h111i

direction of the lattice, and the excitations at the end points
of such a string A are only mobile along the given h111i
direction [see Fig. 2(a)]. Finally, these strings can be
assembled into membrane logical operators

Q
r∈BZr within

parallelepipeds spanned by two distinct h111i directions
(e.g., the ½111� and the ½11̄1� directions), and the excitations
at the corners of such a parallelepiped B are completely
immobile [see Fig. 2(b)].
Parton decomposition.—The effective spin Hamiltonian

~H has an exact noninteracting parton construction. Indeed,
the spins Σr can be decomposed into clusters of partons that
are individually governed by a noninteracting Hamiltonian

FIG. 1. Fracton spin model on the bcc lattice characterized by
cubic lattice vectors a1;2;3 and bond vectors b1;2;3;4. (a) Nearest-
neighbor terms of the model Hamiltonian H. Each term corre-
sponding to a j ¼ 1 (red), j ¼ 2 (green), j ¼ 3 (blue), or j ¼ 4
(purple) bond acts on spin flavor j via σx at the tail and via σy at
the head of the bond arrow. (b) Effective Hamiltonian ~H in the
strong-coupling limit. Each term Wr in ~H is induced by nearest-
neighbor terms (colored lines) in degenerate perturbation theory
and is a product of eight spin operators Y ~r at the corners of the
basic bcc cube as well as six spin operators X ~r at the apices of the
square pyramids based on the faces of this cube. All sites ~r are
marked by appropriate labels.

FIG. 2. One-dimensional (a) and zero-dimensional (b) excita-
tions in the ð101̄Þ plane of our bcc model. In each case, the
excitations are (schematically) located within the red circles and
are created by the operator

Q
r∈A;BZr over the sites r ∈ A; B

marked by black dots.
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but are also subject to gauge constraints that recombine
them into their parent spins. Such parton constructions are
commonly used to capture strongly correlated spin phases,
including spin liquids, on a variational level [22].
For the eight-coordinated bcc lattice, it is a natural choice

[23] to decompose each spin Σr into eight Majorana
fermions (partons) γr;j and γ̂r;j with flavors j ¼ 1, 2, 3,
4 and to assign these eight partons to the eight respective
bonds around the site r [see Fig. 3(a)]. The two Majorana
fermions at each bond then form a complex fermion, which
is demanded to be in an occupied or an unoccupied state,
and the parton state is simply the direct product of all these
local states. Formally, the parton state is the ground state of
the noninteracting Hamiltonian

H ¼
X
j

X
hr;r0ij

iνr;r0γr;jγ̂r0;j; ð4Þ

where νr;r0 ¼ �1 determines whether the complex fermion
at the bond hr; r0ij is occupied or unoccupied.
Since the parton decomposition increases the local

Hilbert space at each site, the partons must be reconciled
with their parent spins by means of appropriate gauge
constraints. Following Ref. [16], we capture our type-I
fracton phase by imposing the overlapping directional
gauge constraints

Gr;j;j0 ¼ γr;jγr;j0 γ̂r;jγ̂r;j0 ¼ 1: ð5Þ

These gauge constraints are indeed directional as each of
them only acts on partons in a particular f110g plane and
overlapping as any two such planes intersect along a
particular h111i direction. We also note that there are three
independent gauge constraints at each site which correctly
reconcile eight Majorana fermions with a single spin.
The three components of the spin Σr are identified with

the three inequivalent gauge-invariant operators

Xr ¼ γr;1γr;2γr;3γr;4 ¼ −γ̂r;1γ̂r;2γr;3γr;4 ¼ …;

Yr ¼ γ̂r;1γr;2γr;3γr;4 ¼ γr;1γ̂r;2γr;3γr;4 ¼ …;

Zr ¼ iγ̂r;1γr;1 ¼ iγ̂r;2γr;2 ¼ iγ̂r;3γr;3 ¼ iγ̂r;4γr;4; ð6Þ

where the equivalent expressions of each spin component
are related by the gauge constraints Gr;j;j0 . Each termWr in
the spin Hamiltonian ~H is then readily written in terms of
the partons and decomposes into a product of 32 bond-
fermion operators iγr;jγ̂r0;j in Eq. (4) [see Fig. 3(b)].
Since the terms Wr also commute with the gauge con-
straints, the exact eigenstates of the spin Hamiltonian ~H are
thus obtained from those of the (noninteracting) parton
Hamiltonian H by enforcing the gauge constraints via
appropriate projections.
From a comparison of Figs. 1 and 3, there is clearly an

intimate connection between the coupled-spin-chain

construction in Eq. (1) and the parton construction in
Eq. (4). Indeed, the spin-combination rules in Eq. (2) for
obtaining the effective low-energy Hamiltonian ~H in
degenerate perturbation theory are identical to the corre-
sponding parton-decomposition rules in Eq. (6) via the
substitutions σxr;j ↔ γr;j, σ

y
r;j ↔ γ̂r;j, and σzr;j ↔ iγ̂r;jγr;j.

This connection can be understood by means of the Jordan-
Wigner transformation

� σxr;j

σyr;j

�
¼

�Y
r0<r

Y
j0

σzr0;j0
Y
j0<j

σzr;j0 ðiσzr;jÞj−1
��

γr;j

γ̂r;j

�
;

σzr;j ¼ iγ̂r;jγr;j; ð7Þ

where the additional factor ðiσzr;jÞj−1 with respect to the
standard form is a local spin rotation. Within the low-
energy subspace characterized by Σr, the Jordan-Wigner
strings in the large parentheses then disappear due to the
spin-locking constraints σzr;jσ

z
r;j0 ¼ 1 or, equivalently,

due to the corresponding gauge constraints Gr;j;j0 ¼ 1.
We emphasize, however, that this connection is restricted
to the low-energy subspace and that it would thus be
incorrect to argue for Eq. (4) by directly substituting
Eq. (7) into Eq. (1).
Extended fracton phase.—As discussed in Ref. [16],

parton constructions can be used to understand the generic
properties of fracton phases. In general, a strongly corre-
lated spin phase is characterized by its parton construction
via the invariant gauge group (IGG), which consists of all
gauge transformations (i.e., generic products of local gauge
constraints) that commute with the parton Hamiltonian.
For a type-I fracton phase, the IGG is generically ZN

2

with N ∼ L due to the presence of planar IGG elements that

FIG. 3. Exact parton construction of our bcc model. (a) Each
spin Σr (large white sphere) is decomposed into eight Majorana
fermions (colored dots) at the bonds around the site r: four γr;j
above r and four γ̂r;j below r with flavors j ¼ 1 (red), j ¼ 2

(green), j ¼ 3 (blue), and j ¼ 4 (purple). Each bond is occupied
by two Majorana fermions γr;j and γ̂r0;j that are in a state
characterized by the bond-fermion operator iγr;jγ̂r0;j ¼ �1 (black
line). (b) Decomposition of each term Wr in the effective spin
Hamiltonian ~H [see Fig. 1(b)] into a product of bond-fermion
operators (black lines).
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are related to the planar conservation laws of the corre-
sponding spin model [16]. For our bcc construction, in
particular, there is a planar IGG element for each f110g
plane as the product of all Gr;j;j0 in a f110g plane spanned
by a net of j and j0 bonds commutes withH in Eq. (4). The
partons themselves can then be identified with the excita-
tions that are only mobile along particular h111i directions.
Indeed, since each parton γr;j (γ̂r;j) anticommutes with
three planar IGG elements containing Gr;j;j0 with j0 ≠ j, it
is constrained to move along the intersection of the three
corresponding planes, which is a h111i direction traced out
by a string of j bonds.
Importantly, the parton construction is valid beyond the

exactly solvable model ~H. In fact, any sufficiently weak
local perturbation that commutes with all the IGG elements
can be added to Eq. (4) while leaving the projected parton
ground state in the original fracton phase. In addition to the
terms iγr;jγ̂rþbj;j already present, the generic quadratic
terms appearing are then i~γr;j ~γrþxbj;j, where x is an
arbitrary integer, and ~γr;j is either γr;j or γ̂r;j. In turn, these
generic terms lead to nontrivial parton dispersions along the
respective h111i directions of motion. While the resulting
parton ground state does not correspond to an exactly
solvable spin model, it can be used as the starting point of a
variational description.
Generalized constructions.—Our coupled-spin-chain

construction is extremely versatile and readily generalizes
to a rich variety of fracton phases. First, it can be defined on
any 4n-coordinated (n ≥ 2) lattice with 2n spins σr;j¼1;…;2n
at each site r. Second, the intersecting spin chains can be
embedded in the lattice in many different ways. In
particular, they do not have to follow straight lines and
might even connect back into themselves to form closed
loops.
Formally, the Hamiltonian is Eq. (1) for any such

coupled-spin-chain construction, where the different bond
types are assigned to the given lattice in a particular way. It
is crucial that there are precisely two bonds of each type j
around each site r at which the two corresponding terms act
with spin operators σxr;j and σyr;j, respectively. Two exam-
ples of such generalized constructions are presented in
Fig. 4(a) on a primitive hexagonal lattice and on a cubic
lattice formed by corner-sharing octahedra. For each
construction, there is a type-I fracton phase in the
strong-coupling limit, and the independent terms Wr of
the effective strong-coupling Hamiltonian ~H are given in
Fig. 4(b). Remarkably, the type-I fracton phase of the
second construction is captured by the X-cube model [14].
Moreover, the fracton phase in the strong-coupling limit

can be readily analyzed without obtaining the concrete
form of the effective Hamiltonian ~H. Because of the
connection between the coupled-spin-chain construction
and the parton construction, the terms Wr in ~H necessarily
decompose into products of appropriate bond-fermion

operators when written in terms of the partons. The fracton
phase is then captured by the noninteracting parton
Hamiltonian in Eq. (4), where the different bond types
are assigned to the lattice in the same way as in Eq. (1). For
such a generalized parton construction, the IGG elements
are products of gauge constraints Gr;j;j0 along nets of j and
j0 bonds, while the partons themselves correspond to
excitations that are mobile along respective strings of j
bonds (i.e., the individual spin chains).
Summary and outlook.—We have provided a general

framework for describing fracton topological phases in
terms of an interpenetrating set of spin chains that are
strongly coupled at their intersection points. It is clear from
the examples presented that this construction can easily
describe many different fracton phases by spin models
involving only two-spin interactions. This work covers the
strong-coupling limit of these spin models, while the weak-
coupling limit and the quantitative domain of the fracton
phase in the strong-coupling regime (i.e., the value of λC)
remain to be understood.
Our construction of fracton phases is analogous to how

the toric-code model is obtained in the spatially anisotropic
limit of the Kitaev honeycomb model [1]. Indeed, if we
form two pairs out of the four spin flavors in Eq. (1) and
only introduce couplings within each pair, we obtain two
orthogonal stacks of two-dimensional topologically
ordered layers; see the Supplemental Material [20]. The
fracton phase is then recovered by including the remaining

FIG. 4. Coupled-spin-chain constructions (a) and effective
strong-coupling Hamiltonians (b) capturing type-I fracton phases
on two different lattices. The notation is taken from Fig. 1. For the
second construction, the strong-coupling Hamiltonian has three
independent terms and corresponds to the X-cube model [14].
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couplings between the two orthogonal stacks [19]. In a
conceptual sense, the coupled-layer models of fracton
phases introduced in Refs. [17,18] are thus an intermediate
step between our coupled-spin-chain models and the
commuting-projector models in Ref. [14].
Finally, it follows from our work that parton construc-

tions describing fracton phases can be generally converted
into appropriate spin models. While the noninteracting
parton constructions in this work give rise to coupled-spin-
chain models involving two-spin interactions, the interact-
ing parton constructions in Ref. [16] translate into more
general spin models involving four-spin interactions.
Remarkably, these parton constructions describe both
type-I and type-II fracton phases, characterized by immo-
bile excitations at the corners of membrane and fractal
operators, respectively [24]. Our formalism thus brings us
one step closer to realizing these highly unconventional
topological phases in the laboratory.
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