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The modern semiclassical theory of a Bloch electron in a magnetic field encompasses the orbital
magnetization and geometric phase. Beyond this semiclassical theory lies the quantum description of field-
induced tunneling between semiclassical orbits, known as magnetic breakdown. Here, we synthesize the
modern semiclassical notions with quantum tunneling—into a single Bohr-Sommerfeld quantization rule
that is predictive of magnetic energy levels. This rule is applicable to a host of topological solids with
unremovable geometric phase, that also unavoidably undergo breakdown. A notion of topological
invariants is formulated that nonperturbatively encode tunneling, and is measurable in the de Haas–van
Alphen effect. Case studies are discussed for topological metals near a metal-insulator transition and
overtilted Weyl fermions.
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The semiclassical Peierls-Onsager-Lifshitz theory [1–4]
of a Bloch electron in a magnetic field has been extended
[5–7] to incorporate two modern notions: a wave packet
orbiting in quasimomentum (k) space acquires a geometric
Berry phase (ϕB) [8,9], as well as a second phase (ϕR)
originating from the orbital magnetic moment of a wave
packet about its center of mass [10,11]. Both ϕB and ϕR are
evaluated on semiclassical orbits which are uniquely
determined by Hamilton’s equation. If the quasimomentum
separation between two neighboring orbits is of the order of
the inverse magnetic length, field-induced quantum tun-
neling (known as magnetic breakdown) [7,12–17] invalid-
ates a unique semiclassical trajectory.
Can the modern semiclassical notions of geometric

phase and orbital moment be combined with the quantum
phenomenon of breakdown? A unified theory would
describe a host of solids which have emerged in the recent
intercourse between band theory and topology. These
solids are characterized by geometric phase which is
unremovable owing to symmetry; the robust intersection
of orbits simultaneously guarantees breakdown.
We propose that the magnetic energy levels in these

solids are determined by Bohr-Sommerfeld quantization
rules that unify tunneling, geometric phase, and the orbital
moment—these rules generalize the Onsager-Lifshitz-Roth
quantization rules [2,4,6] for transport within a single band,
and provide an algebraic method to calculate Landau-level
spectra without recourse [18–20] to large-scale, numerical
diagonalization. These rules are also predictive of de Haas–
van Alphen [21,22] (dHvA) peaks, as well as of fixed-bias
peaks of the differential conductance in scanning-tunneling
microscopy (STM) [23,24].
While oscillatory patterns in the dHvA [21,22] meas-

urement underlie the “fermiological” [25] construction of
Fermi surfaces [26,27], such oscillations are generically
disrupted by tunneling in low-symmetry solids [28]. Here,

we demonstrate how multiharmonic oscillations may
nevertheless persist in high-symmetry solids whose orbits
intersect at a saddle point. Furthermore, the phase offset of
each harmonic is a topological invariant that nonperturba-
tively encodes tunneling in magnetotransport, as well as
sharply distinguishes Fermi surfaces with differing Berry
phases.
Our last case study describes tunneling at the intersection

of a hole and electron pocket, as exemplified by an
overtilted Weyl point [29–33]; the corresponding magnetic
energy levels were first studied numerically in Ref. [19].
Here, we present the first Berry-phase-corrected quantiza-
tion rule which is valid at any tunneling strength, and
compare our algebraically derived Landau-level spectra to
their [19] numerically exact spectra.
Throughout this Letter, we orient the field along z⃗, such

that orbits are contours of the band dispersion at fixed
energy E and kz. In the k⊥ ≔ ðkx; kyÞ neighborhood where
two orbits approach each other hyperbolically [illustrated in
Fig. 1(a)], tunneling is significant if the rectangular area
(4ab) inscribed between the hyperbolic arms is comparable
to or smaller than 1=l2, with l ≔ ðℏc=ejBjÞ1=2 the magnetic
length. The orientation of the approaching orbits, as
determined by Hamilton’s equation ℏ_k ¼ −jejv × B=ℏc,
distinguishes between two qualitatively distinct types of
breakdown: (a) if both arms carry the same orientation,
tunneling occurs between contours of the same band. Case
(b) for which both arms are oppositely oriented will be
discussed in the second half of the letter. The former case,
known as intraband breakdown, occurs wherever band
contours change discontinuously as a function of energy;
the nucleus of this Lifshitz transition is a saddle point which
disperses as εk ¼ k2x=2m1 − k2y=2m2. The vanishing band
velocity at k⊥ ¼ 0 implies that a hypothetical wave packet
satisfying Hamilton’s equation never reaches the saddle
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point in finite time [34]. The probability of vertical trans-
mission (between ↗-incoming and ↖-outgoing trajecto-
ries) equals jT j2≔ ð1þe−2πμÞ−1 [35], with μ≔ ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

p
El2

geometrically interpreted as abl2=2, and E measured from
the saddle point.
The conceptually simplest realization of intraband break-

down occurs for two orbits (at E > 0) that merge into a
single orbit (at E < 0), as illustrated in Figs. 1(b)–1(c). This
merger has at least two topologically distinct realizations:
(ai) a conventional metal whose band dispersion has two
nearby maxima [Fig. 1(f)], and (aii) a topological metal
near a metal-insulator transition, where two Weyl points
(touching points between two conically dispersing bands)
[36,37] with opposite chirality are near annihilation
[Fig. 1(g)]. Our comparative study of (ai)–(aii) illustrates
how their difference in Berry phase manifests in their
Landau levels, which are determined in both cases by the
following quantization rule:
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T ≔ ð1þ e−2πμÞ−1=2eiφ is the aforementioned transmis-
sion amplitude, with φ ¼ arg½Γð1=2 − iμÞ� þ μ log jμj − μ
involving the Γ function [38]. Ωj ≔ Ω½oj� is the semi-
classical phase acquired by a wave packet in traversing oj,
which is a closed Feynman trajectory illustrated in
Figs. 1(b)–1(c). For E > 0, o1 is simply the left orbit in
Fig. 1(b); for E < 0, o1 combines the left half of the orbit
with a tunneling trajectory [dashed line in Fig. 1(c)]
through the semiclassically forbidden region,

Ω½ojðEÞ; l2� ¼ l2S½ojðEÞ� þ ϕM þ λ½ojðEÞ�; ð2Þ
includes (i) a dynamical phase proportional to the k⊥-space
area S bounded by oj, with S positive (negative) for a

clockwise-oriented (anticlockwise) orbit. Here, fS½oj�g
carry the same sign.
The remaining contributions to Ωj are subleading in

powers of jBj: (ii) the Maslov phase (ϕM) equals π for
trajectories that are deformable to a circle [39], and (iii) a
further correction (λ) encodes the aforementioned geo-
metric phase and orbital moment, as well as the well-known
Zeeman coupling. Whether the orbital moment contributes
to λ depends on the crystalline symmetries of the spin-orbit-
coupled solid, as well as the field alignment relative to
certain crystallographic axes. First consider a time-reversal
invariant, noncentrosymmetric metal with a twofold rota-
tional axis parallel to the field (z⃗ )—these symmetries
stabilize Weyl points in the rotationally invariant two-torus
(denoted BT⊥) [31]. Then, λj ≔ λ½oj� equals the geometric
phase (ϕB), i.e., the line integral over oj of the Berry
one-form [8] ihu1kj∇ku1ki · dk. Here, eik·ru1k is the Bloch
function of the low-energy band in Figs. 1(f)–1(g); redefin-
ing u1k by a k-dependent phase may add to ϕB an integer
multiple of 2π, but does not affect the quantization
condition in Eq. (1). The composition of time-reversal
and twofold rotation is a symmetry (denoted Tc2z) that
makes wave functions real at each k⊥ ∈ BT⊥, hence,
eiϕB ∈ R [40], with ϕB ¼ 0 and π for the conventional
and topological metal, respectively. Moreover, since the z
component of angular momentum flips under Tc2z, both the
orbital moment and the spin expectation value [sðkÞ] lie
parallel to BT⊥, and do not contribute to λ [41].
To observe the orbital moment and Zeeman coupling, we

consider a different class of solids with a mirror symmetry
(x → −x) that relates the two maxima in (ai) and the two
Weyl points in (aii); this symmetry allows the orbital
moment/s to tilt out of BT⊥ at k⊥ which are not reflection
invariant. Then, λ ¼ ϕB þ ϕR þ ϕZ [42], withϕR defined as
the line integral [44] of the orbital-moment one-form [41]:

A · dk ¼ i
X

l≠1
hu1kj∇kulkiΠy

l1dkx=2vy þ ðx ↔ yÞ: ð3Þ

Here, ΠðkÞln ≔ ihulkje−ik·r̂½Ĥ0; r̂�eik·r̂junki=ℏ are matrix
elements of the velocity operator, v ≔ Π11, Ĥ0 is the
single-particle, translation-invariant Hamiltonian, and r̂
the position operator.

P

l≠1 denotes a sum over all
bands excluding u1k [45]. Finally, λ is contributed by the
Zeeman phase (ϕZ), which is the line integral [46] of
g0szðkÞjdkj=2mðv2x þ v2yÞ1=2, with g0 ≈ 2 the free-electron
g factor, and m the free-electron mass. If the orbital
moment=s tilts toward þz⃗ at a wave vector k⊥ ∈ o1, the
tilt occurs toward −z⃗ in the reflection-mapped wave vector
lying in o2, hence λ1 ¼ −λ2 modulo 2π [47].
The quantization rule [Eq. (1)] has been derived by

Azbel [13] in the Peierls-Onsager approximation [1–3],
which effectively dispenses with the λ correction to Ω. By
accounting for the subleading-in-jBj correction [5–7] to the
effective Hamiltonian of a Bloch electron in a magnetic
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FIG. 1. (a) Illustration of a region in k⊥ space with significant
tunneling. (b)–(c) Constant-energy band contours of two distinct
orbits (above the saddle point) that merge into one (below).
Black arrows indicate the orientation determined by Hamilton’s
equation. (d)–(e) Plot of θη vs jT j ¼ ð1þ e−2πμÞ−1=2 for the
conventional metal (blue line) and the topological metal (red).
(f)–(g) Band dispersion of a conventional metal (left), and a
topological metal (right).
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field, we have derived an improved connection formula
[43] that patches the semiclassical WKB wave function
[48,49] across the region of strong tunneling. Continuity of
the patched WKB wave function imposes the λ-corrected
quantization rule in Eq. (1).
Viewing Eq. (1) at fixed field, the discrete energetic

solutions correspond to Landau levels. Viewed at constant
Fermi energy (EF), the discrete solutions correspond to
values of l2, where Landau levels successively become
equal to EF, leading to peaks in a dHvA or fixed-bias STM
measurement; such discrete l2 are, henceforth, referred to as
dHvA levels. The Landau and dHvA levels may be intuited
in the semiclassical limit: μ → ∞, where T → 1, and
Eq. (1) simplifies to independent quantization rules for
two uncoupled orbits oj illustrated in Fig. 1(b):Ωj=2π ∈ Z.
The Landau spectrum splits into two sets labeled by j,
where adjacent spacings within each set are locally periodic
as Ej;nþ1 − Ej;n ¼ 2π=½l2ð∂Sj=∂EÞ] with the right-hand
side evaluated at Ej;n, n ∈ Z and Sj ≔ S½oj�. Analogously,
the dHvA levels split into two sets, where adjacent levels in
each set are periodic as l2j;nþ1 − l2j;n ¼ 2π=SjðEFÞ. This
(local) periodicity also characterizes the opposite semi-
classical limit μ → −∞, where both T and φ → 0, and we
obtain a single quantization rule for the merged orbit
o1 þ o2 illustrated in Fig. 1(c). Let us describe the case
of general μ in symmetry classes where the two orbits are
not mutually constrained (this includes the Tc2z class): the
two incommensurate harmonics ðΩ1 � Ω2Þ=2 in Eq. (1)
competitively produce a Landau and dHvA spectrum that is
not (locally) periodic but retains a long-ranged correlation;
such spectra have been called quasirandom [28].
In contrast, the mirror symmetry in the second class of

solids enforces S½o1� ¼ S½o2� ≔ S at all energies, and this
demonstrably allows for locally periodic spectra. The
mirror-symmetric quantization condition is solved by
two sets of Landau-dHvA levels distinguished by an index
η ∈ �: l2jSðEÞj ¼ 2πnþ ϕM þ θη, with

θηðE; l2Þ ≔ φðμÞ þ cos−1η ½jT ðμÞj cosðλ1Þ�; ð4Þ

defined as a phase: θ ∼ θ þ 2π, and cos−1η ð·Þ denotes the
principal value in ½0; π� for η ¼ þ, and in ½−π; 0� for η ¼ −:
For μ → ∞, θ� → �λ1 implies symmetrically split Landau
levels; as μ → −∞, θ� → �π=2 implies that this symmet-
ric splitting equals π, and both sets of Landau levels
(distinguished by η) may be viewed as a single set with
an emergent local period 2π=½l2∂ð2SÞ=∂E�—this corre-
sponds to a combined orbit that is intersected by a
reflection-invariant line; S½o1þo2� ¼ 2S, and λ½o1þo2� ¼ 0
[50]. To observe locally periodic dHvA levels at EF, it is
necessary that θ varies slowly on the scale of the dHvA
period 2π=SðEFÞ. Indeed, the typical scale of variation
for jT ðμÞj and φðμÞ is Δμ ∼ 1, which implies a scale Δl2 ∼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

p
EF from the definition of μ; Δl2=½2π=SðEFÞ� is,

therefore, negligible for small enough jEFj or large enough
SðEFÞ. Presuming these conditions, θη is extractable as a
phase offset in the dHvA oscillations [41]. Equation (4)
represents one key result for intraband breakdown—that
the dHvA phase offset nonlinearly depends on both the
tunneling parameter T , as well as the semiclassical phase
corrections: ϕR;ϕB;ϕZ.
To conclude our discussion of intraband breakdown,

we propose a symmetry class where θ depends on a
universal function of μ, with an additive Berry-phase
correction that is insensitive to symmetric deformations
of the metal. In addition to the mirror symmetry presup-
posed in Eq. (4), we further impose Tc2z symmetry so that
eiλ ¼ eiϕB ¼ 1 (−1) for the conventional (topological)
metal; this is the symmetry class of TaAs, which has four
mirror-related pairs [51] of Weyl points in the rotational-
invariant BT⊥ [52–54]. Equation (4) thus simplifies to
θη¼φðμÞþcos−1η jT ðμÞjþϕB, which are plotted against
jT ðμÞj in Figs. 1(d)–1(e), for both topological (red line)
and conventional (blue) metals. As μ is varied over R, θη
robustly covers the interval ½π=2; 3π=2� in the former case,
and ½−π=2; π=2� in the latter; the exact π offset originates
from the Berry-phase difference. In both cases, θþ ¼ θ− for
μ → ∞ implies a twofold degeneracy in the Landau levels,
which did not arise in the Tc2z-asymmetric case. We,
therefore, associate the robust covering of a π interval
(in either case) to a Lifshitz transition in solids with Tc2z
and mirror symmetries. This may be viewed in a unifying
analogy with field-free topological insulators, where the
Berry phase covers 2π [55–61] (or rational fractions thereof)
[62,63] as a function of a crystal wavevector. In comparison,
θη includes not just the Berry phase, but also nonperturba-
tively encodes tunneling through its dependence on T .
Being robust against symmetry-preserving deformations of
the metal, the π covering of θη may be viewed as a
topological invariant in quantum magnetotransport.
In case (b), both hyperbolic arms are oppositely

oriented and belong to distinct bands—they touch at the
intersection of hole- and electronlike pockets, as exempli-
fied by an overtilted Weyl fermion [29–31,33]. This
touching point is modeled by the Hamiltonian: HIIðk⊥Þ ¼
ðuþ vσ3Þkx þ wσ1ky, with juj > jvj and σj Pauli matrices.
Interband tunneling occurs with the Landau-Zener proba-
bility e−2πμ̄ [7], with μ̄ ¼ ðvElÞ2=2jwjðu2 − v2Þ3=2, and E
measured from the degeneracy. This probability is unity at
E ¼ 0; in comparison, jT j2 ¼ 1=2 at the saddle point [35].
In both intra- and interband breakdown, the respective
dimensionless parameters jμj and μ̄ are geometrically
interpreted as abl2=2; however, a and b are distinct
functions of E and k · p parameters: u, v, w in HII , and
m1, m2 for the saddle point.
The simplest scenario [19] of two orbits fōjg2j¼1 linked

by interband breakdown describes an overtilted Weyl
fermion modelled by Hðk⊥Þ ¼ HII − jtjð1 − σ3Þk3x; such
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fermions were predicted to arise in WTe2 [31], whose
symmetry class (Tc2z) we adopt in the following discussion
[64]. The corresponding constant-energy band contours
are illustrated in Figs. 2(a)–2(c), and the quantization
condition is

cos

�

Ω1̄ þΩ2̄

2

�

�
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�

E;l2

�

¼ τðμ̄Þ cos
�

Ω1̄ −Ω2̄

2

�

�

�

�

E;l2
þ φ̄ðμ̄Þ

�

; ð5Þ

where τeiφ̄ (with τ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πμ̄
p

) is the amplitude for
intraband transmission between ↘-incoming and ↙-
outgoing trajectories, and φ̄¼ μ̄− μ̄lnμ̄þarg½Γðiμ̄Þ�þπ=4.
Ωj̄ is the phase acquired by a wave packet in traversing the
closed Feynman trajectory ōj in Fig. 2(a). Ωj̄ ≔ Ω½ōj� has
the same functional form as Eq. (1), with eiλ ¼ eiϕB ∈ R
owing to Tc2z symmetry; eiϕB changes discontinuously
across the band-touching point, owing to ō1 encircling the
Dirac point only for positive energies. The opposing
orientations of fōjg result in fS½ōj�g carrying different
signs.
Equations (5) and (2) is our central result for interband

breakdown, and may be derived from eigensolution of the
effective Hamiltonian H ¼ ðuþ vσ3ÞKx þ wσ1Ky in the
vicinity of the band-touching point, with kinetic quasimo-
mentum operators satisfying K × K ¼ ijejB=c; H is writ-
ten in a representation whose basis functions are magnetic
analogs [17] of Luttinger-Kohn functions [65]. FromH we
derive an improved connection formula [43] which extends
a previous work [17] by including the effect of the Berry
phase; continuity of the connected WKB wave function
then imposes Eqs. (5) and (2).
Since no crystalline symmetry relates an electron to a

hole pocket, the two harmonics ðΩ1̄ �Ω2̄Þ=2 in Eq. (5) are
generically incommensurate, and competitively produce a
quasirandom Landau-dHvA spectrum. There are two semi-
classical limits where a locally periodic spectrum emerges:
(i) for μ̄ ≫ 1 (the weak-field limit above or below the
Dirac-point energy), the intraband-transmission amplitude
τeiφ̄ → 1, and we obtain independent quantization con-
ditions Ωj̄ ¼ 2nπ for two uncoupled orbits. (ii) For μ̄ ≈ 0,

the interband-tunneling probability approaches unity, and
Eq. (5) is solved approximately by

l2ðS1̄ þ S2̄ÞjE0
n
¼ 2nπ; Sj̄ ≔ S½ōj�; n ∈ Z: ð6Þ

One subtlety of the limit μ̄ → 0 is that Ωj̄ is well-defined
only for isolated orbits [cf. Eq. (2)]. At the Dirac-point
energy, the two orbits merge into a figure of eight illustrated
in Fig. 2(b), and the Berry connection (for a k-derivative in
the azimuthal direction) diverges at k⊥ ¼ 0 [66]. The
validity of Eq. (6) at strictly-zero energy may independ-
ently be justified by the following semiclassical quantiza-
tion rule: to leading order in jBj, Eq. (6) may be
reinterpreted as a generalization of the Onsager-Lifshitz
rule [2,4] to an orbit which is only partially electronlike
[19,20]. The field-independent correction to Eq. (6) com-
prises ϕM and ϕB, which individually vanish; this contra-
dicts a claim [19] that ϕM ¼ ϕB ¼ π. That ϕB vanishes
following from inspection of Fig. 2(b): by following the
figure-of-eight trajectory, the wave function pseudospin
does not wind. ϕM may be derived from the connection
formulas of turning points where the WKB wave function
is invalid [48]. The connection phase at each point is�π=2,
with � determined by the orientation of a wave packet as it
rounds the point [43]. ϕM ¼ 0 follows from the vanishing
of the net connection phase [green dots in Fig. 2(b)].
Let us perturbatively treat quasirandom Landau-dHvA

spectra in parameter regimes, where a single harmonic is
dominant. For μ̄ ≈ 0, the dominant harmonic is associated
to the semiclassical fan: fE0

nðBÞgn∈Z [cf. Eq. (6)]; to
leading order in τ, the tunneling correction to the fan
oscillates with the frequency of the weaker harmonic:

δE1
n ¼ 2ð−1Þnþ1sgn½E� τðμ̄Þ

l2ðS1̄ þ S2̄Þ0
sin

�

l2ðS1̄ − S2̄Þ
2

þ φ̄

�

;

ð7Þ

with the right-hand side evaluated at E0
n, andO0 ≔ ∂O=∂E.

The tunneling correction to E0
0 (where the zero-field

electron and hole pockets are perfectly compensated) is
linear in E0

0 and grows as jBj1=2 to lowest order in jBj. As
jEj → 0, there is a logarithmic divergence in the second-
order derivatives (with respect to E) of the classical action
function ½l2ðS1̄ − S2̄Þ�; in Eq. (7), this nonanalyticity is
canceled by a logarithmic divergence in the tunneling phase
φ̄. While the Berry phase did not affect the semiclassical
fan of Eq. (6), it shifts the phase of the tunneling correction
(δE1

n) by π=2; this has already been accounted for in
Eq. (7). The validity of Eq. (7) relies on τ and φ̄ being small
and slowly varying on the scale of δE1

n. Indeed, the typical
scale of variation for τ and φ̄ is Δμ̄ ∼ 1, which implies an
scale ΔE ∼

ffiffiffiffi

w
p ðu2 − v2Þ3=4=ðvlÞ. For typical values of u

and v, δE1
n=ΔE vanishes for small enough field or jE0
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FIG. 2. An overtilted Weyl point that is not linked by tunneling
to other Weyl points. (a) Band contours at fixed nonzero
energy. (b) Zero-energy band contour of HII − jtjð1 − σ3Þk3x ≔
d1ðk⊥Þσ1 þ d3ðk⊥Þσ3; the d-vector is illustrated by blue arrows,
with d1 (d3) the vertical (horizontal) component of each arrow.
(c) Band dispersion. (d) Landau spectrum for the tight-binding
model in Ref. [19], employing their units for energy and jBj.
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Our perturbation theory [Eqs. (6), (7)] is tested against
the numerically exact Landau levels of an overtilted Weyl
point modeled in Ref. [19]. Inserting their tight-binding
parameters (detailed in the Supplemental Material [67])
into Eqs. (6)–(7), we plot in Fig. 2(d) the semiclassical fan
[dashed lines] and the quantum correction [solid], which
compares favorably with Fig. 2 in Ref. [19].
Discussion.—We have presented generalized quantiza-

tion rules that incorporate both tunneling and the geometric
phase. Because of the intrinsic phase ambiguity in the wave
function of wave packets that approach or leave a tunneling
region, we broadly argue that the geometric phase should
manifest in any tunneling phenomena. This phase is
especially relevant if tunneling occurs within a subspace
of states (bands, in our context) nontrivially embedded in a
larger Hilbert space; this has been overlooked in conven-
tional treatments [13,17,68] of tunneling by connection
formulas.
The modern prototype of a nontrivially embedded

band is one that disperses conically near a band-touching
(Dirac-Weyl) point. We have exemplified how the unre-
movable geometric phase of a Dirac-Weyl point influences
the quantization rules for both intra- [cf. Eqs. (1), (2)] and
interband [cf. Eqs. (5), (2)] breakdown; consequences have
been discussed for the spectra of Landau levels and
dHvA peaks.
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Yale Postdoctoral Prize Fellowship and NSF DMR Grant
No. 1603243.
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