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The search for exotic topological effects of phonons has attracted enormous interest for both fundamental
science and practical applications. By studying phonons in a Kekulé lattice, we find a new type of pseudospin
characterized by quantized Berry phases and pseudoangular momenta, which introduces various novel
topological effects, including topologically protected pseudospin-polarized interface states and a phonon
pseudospin Hall effect. We further demonstrate a pseudospin-contrasting optical selection rule and a
pseudospin Zeeman effect, giving a complete generation-manipulation-detection paradigm of the phonon
pseudospin. The pseudospin and topology-related physics revealed for phonons is general and applicable for
electrons, photons, and other particles.
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One of the most exciting fields in modern condensed-
matter physics is the research of topological states of
quantum matter, like the quantum (anomalous or spin)
Hall [Q(A or S)H] states, which has revolutionized our
understanding of electronics [1,2]. Topological concepts
have also been applied to investigate phonon-related proper-
ties, leading to an emerging field of “topological phononics”
[3–26]. For phononic and acoustic systems, the QAH-like
states were intensively studied, which have topologically
protected one-way edge modes that can act as ideal con-
duction channels and diodes [3–14]. However, their appli-
cation requires noticeably breaking time-reversal symmetry
(TRS), which is still experimentally challenging despite
many approaches proposed [3–14,27–29]. While phonons
are typically spinless [30], their properties are enriched by
pseudospins. The QSH-like states can be viewed as two
copies of the QAH-like states for pseudospin up and
pseudospin down related to each other by a pseudo-TRS,
which also have backscattering-immune edge modes [18–
20]. Their realization, however, crucially relies on a dedicated
design of pseudo-spin-orbit coupling (SOC). Thus, topologi-
cal effectswith noneed ofTRSbreakingandpseudo-SOCare
desirable for both fundamental and practical interests.
Topological effects in solids are closely related to the

Berry curvature and its integral—the Berry phase [31]. This
is well demonstrated by the promising research of valley-
tronics [31,32], which discovered various topological
phenomena for the valley pseudospins of electrons, like
the (quantum) valley Hall effect [33,34] and topological
valley transport [35,36]. Because the topological physics
is independent of particle statistics, similar extraordinary
effects are applicable for phonons, introducing an in-
triguing field of valley phononics [12,37–40]. Naturally,

the topological physics could be further generalized to
other types of pseudospins characterized by nonzero Berry
phases, pointing out new research directions. This moti-
vates us to find novel pseudospins and topological effects
for manipulating phonons in unprecedented ways.
In this Letter, we studied phonons in a honeycomb lattice

with Kekulé distortion, namely, a Kekulé lattice, where the
valley pseudospins are ill defined due to the intervalley
interaction. We found a new type of pseudospin that
emerges from valley-valley coupling and is characterized
by a quantized Berry phase of �π and a well-defined
phonon pseudoangular momentum. Importantly, our study
demonstrated that the phonon pseudospin not only provides
a novel quantum degree of freedom to control phonons but
also leads to exotic topological effects, including topologi-
cally protected pseudospin-polarized interface states and a
phonon pseudospin Hall effect. Moreover, we proposed a
pseudospin-contrasting optical selection rule and a pseu-
dospin Zeeman effect of phonons and also predicted
candidate materials to realize the Kekulé phonons. Our
work provides a complete paradigm to generate, manipu-
late, and detect the phonon pseudospin, which opens
opportunities for future phononics.
The Kekulé lattice is defined as a honeycomb lattice

with Kekulé distortion in a period of a
ffiffiffi
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×
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supercell
[Fig. 1(a)]. The corners of the original Brillouin zone (BZ)
(K and K0) are folded to the center of the new BZ (Γ)
[Fig. 1(b)]. Therefore, Dirac states at the K and K0 couple
with each other, resulting in exotic physics in the distorted
graphene, like chiral symmetry breaking, charge fraction-
alization, soliton, etc. [41–43]. Recently, Wu et al. theo-
retically proposed the realization of QSH-like states in a
Kekulé lattice for photons [44] and electrons [45,46]. The
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proposal was soon generalized for acoustic systems that
were examined experimentally [21–23].
To study lattice vibrations of the Kekulé lattice, we

employed a mass-spring model that describes an A=B
sublattice by masses mA ¼ mB ¼ m and includes inter-
atomic interactions with nearest and next-nearest neighbors
by springs of spring constants f1;2;3 ¼ fð1þ δ1;2;3Þ and f0,
respectively [Fig. 1(a)]. For simplicity, we considered only
in-plane lattice vibrations that are decoupled from out-of-
plane modes in a planar structure. Let us begin with a
honeycomb lattice (δ1;2;3 ¼ 0). The longitudinal acoustic
and longitudinal optical modes form linear Dirac-like bands
near the K andK0 points [Fig. 1(c)]. Band degeneracy at the
Dirac points is protected by inversion symmetry and TRS

[12]. Phonon modes near the Dirac points, namely, Dirac
phonons, are described by an effective HamiltonianH0 in a
basis of px � ipy orbitals [12]:

H0 ¼ vDðkyτzσx − kxσyÞ; ð1Þ

where H0 is referenced to the Dirac frequency ωD ¼
½ð3f þ 9f0Þ=2m�1=2, vD ¼ 3fa=ð8mωDÞ is the group veloc-
ity (a is the nearest-neighbor distance), k is the wave vector
referenced to the K or K0, and σ and τ are the Pauli matrices
with σz ¼ �1 and τz ¼ �1 referring to sublattice A (B) and
valley index K (K0), respectively. Parameters m ¼ 1, f ¼ 1,
f0 ¼ 0.05, and a ¼ 1 were selected the same as before [12].
Generally, the Dirac point can be gapped by perturbation

terms that anticommute with H0, implying four types of
mass terms σz, σzτz, σxτx, and σxτy (see Supplemental
Material [47]). The inversion symmetry-breaking term σz
and the TRS-breaking term σzτz (i.e., the Haldane term
[53]) were discussed previously [12]. The latter two open
the Dirac gap by mixing the two valleys and can be realized
by the Kekulé distortion.
The Kekulé distortion introduces a perturbation termHK

into the effective Hamiltonian, which is described by

HK − Δ0 ¼ Δ1σxτx þ Δ2σxτy ¼ mKσxτn; ð2Þ

where Δ0 ¼ 2ðδ1 þ δ2 þ δ3Þω0, Δ1 ¼ ðδ1 − 2δ2 þ δ3Þω0,
Δ2¼

ffiffiffi

3
p ðδ3−δ1Þω0, ω0 ¼f=ð8mωDÞ, jmKj¼ ½Δ2

1þΔ2
2�1=2,

τn ¼ τx cos θ þ τy sin θ, and θ is the azimuthal angle that
is allowed to vary within ð−π=2; π=2� only by defining
mK ¼ �jmKj [47]. Dirac phonons in a Kekulé lattice,
namely, Kekulé phonons, are described by the effective
Hamiltonian H ¼ H0 þHK . Because of the band folding,
a double Dirac cone is formed at the Γ when HK ¼ 0,
giving a fourfold degenerate Dirac point. It is gapped
into two doubly degenerate bands with dispersions ωk ¼
ωD þ Δ0 � ðv2Djkj2 þm2

KÞ1=2 (labeled by E1 and E2)
[Figs. 1(d)–1(f)]. The band degeneracy is ensured by the
C3v (C6v when θ ¼ 0) point group symmetry that has two-
dimensional irreducible representations. When θ ¼ 0, E1

and E2 correspond to px � ipy and dx2−y2 � idxy basis
orbitals, which have odd and even parities, respectively
[44]. When θ ≠ 0, these two kinds of orbital mix with each
other due to inversion symmetry breaking. Z2 topology of
the Kekulé model is discussed and compared with liter-
atures in Supplemental Material [47].
A new type of phonon pseudospin.—A pseudospin oper-

ator is defined as S¼σyτn0 , where τn0 ¼−τx sinθþτycosθ,
satisfying the relation ½S;H� ¼ 0. The eigenvalue s ¼ �1
represents pseudospin up or pseudospin down, which is a
good quantum number to label the doubly degenerate E1 and
E2 bands. In the basis of Dirac phonon eigenmodes jA;Ki,
jB;Ki, jA;K0i, and jB;K0i [depicted in Fig. 1(b)], the
pseudospin eigenstates at the Γ are given by
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FIG. 1. (a) A honeycomb lattice with Kekulé distortion having
force constants f1;2;3 (colored red, gray, and green) with nearest
neighbors and (b) the Brillouin zone. The black and red dashed
lines correspond to a unit cell and

ffiffiffi

3
p

×
ffiffiffi

3
p

supercell, respectively.
(c) Schematic of Dirac phonons formed by linear band crossings
between the longitudinal acoustic (“LA”) and longitudinal optical
(“LO”) branches at the K and K0 points. The four eigenmodes
(jA;Ki, jB;Ki, jA;K0i, and jB;K0i) are displayed with informa-
tion about circular polarizations and phases. (d)–(f) Phonon
dispersions (θ ¼ π=4) for mK ¼ 0 and mK ¼ �0.05, respectively.
A band gap opens at the Γ when mK ≠ 0, showing two doubly
degenerate bands E1 and E2 whose band orders are opposite
betweenmK > 0 andmK < 0. (g)–(k) Berry curvature distribution
of E1 and E2 bands for pseudospin up and pseudospin down. The
phonon pseudoangular momenta jph at the Γ are labeled.
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jE1;↑i ¼
1
ffiffiffi

2
p ðieiθjA;K0i þ ijB;KiÞ;

jE1;↓i ¼
1
ffiffiffi

2
p ðjA;Ki þ eiθjB;K0iÞ;

jE2;↑i ¼
1
ffiffiffi

2
p ðjA;Ki − eiθjB;K0iÞ;

jE2;↓i ¼
1
ffiffiffi

2
p ð−ieiθjA;K0i þ ijB;KiÞ: ð3Þ

When θ ≠ 0, these pseudospin eigenstates have quantized
pseudoangular momenta due to the C3 rotational symmetry
at the Γ [37]. The pseudoangular momentum operator,
defined at k ¼ 0, is given by Jph ¼ −σzτz [47], satisfying
the relations ½Jph; H� ¼ 0 and ½Jph; S� ¼ 0. Therefore, the
pseudospin eigenstates have well-defined jph at the Γ: jph ¼
1 for jE1;↑i and jE2;↓i and jph ¼ −1 for jE1;↓i and jE2;↑i.
Since both S and Jph anticommute with the vertical mirror
plane reflections of C3v, s ¼ �1 and jph ¼ �1 always
appear in pairs, forming a 2D irreducible representation of
the point group. When θ ¼ 0, the system has a higher point
group symmetry of C6v. The above discussion remains
unaffected, except that the expression of Jph becomes more
complicated, and jph of jE2;↑i and jE2;↓i changes to þ2 and
−2, respectively.
To explore topological effects, we defined the Berry

connection Ak ¼ −ihukj∇kjuki and the Berry curvature
Bk ¼ ∇k ×Ak for phonon eigenstates juki. The Berry
curvature distribution of Kekulé phonons is given for each
pseudospin:

Bk;s ¼ � s
2

mK=vD
½jkj2 þ ðmK=vDÞ2�3=2

; ð4Þ

where þ and − denote E1 and E2 bands, respectively. As
shown in Fig. 1(g), Bk;s is nearly zero except around the Γ,
which is opposite between E1 and E2 and for opposite
pseudospins. The integration of Berry curvature near the
Γ point gives a quantized Berry phase γs ¼ �sπsgnðmKÞ
and thus a quantized pseudospin Chern number Cs ¼
�ðs=2ÞsgnðmKÞ when mK is small [47]. The Berry phase
gets nearly quantized for moderate mK . Then it is still
physically meaningful to define the pseudospin Chern
number in an approximated manner [47]. Note that the
QSH-like states with Z2 ¼ 1 require Cs ¼ �1 [1], for
which two copies of the Kekulé model are necessary.
Topologically protected pseudospin-polarized interface

states.—For an interface with opposite mK on the two sides
[Fig. 2(a)], the pseudospin Chern number changes sign
across the interface, leading to ΔCs ¼ �1. The conse-
quence of ΔCs is the existence of gapless phonon modes
at the interface, with one pseudospin moving forward and
the other backward, according to the bulk-boundary cor-
respondence [1]. Our calculations indeed found in-gap
interface states that are pseudospin-momentum locked

[Fig. 2(b)]. This result agrees with previous data [21–23,
44–46], verifying our physical interpretation. The pseudo-
spin-polarized interface states are ideal phonon conduction
channels for topological pseudospin transport. They are
robust against disorder scattering, since the conservation of
pseudospin forbids backscattering. To demonstrate this
feature explicitly, we introduced disorders into a ribbon
structure with a topological interface and performed trans-
port calculations by the nonequilibrium Green’s function
(NEGF) method [54–56]. Our data show that disorders
scatter most states significantly except the in-gap interface
states [Fig. 2(c)].
Note that the topological boundary states have a tiny band

gap near the Γ, because the point group symmetry that
ensures the gapless feature gets slightly broken in the inter-
face region and also partially because of the loss of strict
topological protection when mK is not very small [47]. The
magnitude of the band gap (Δg) depends on the strength of
symmetry breaking. Our numerical calculations find that Δg

can be significantly tuned by varying θ, which vanishes at a
critical value ofθ0 ≈�0.28π [Supplemental Fig. S5(a) [47] ].
Phonon pseudospin Zeeman effect.—TRS of phonons

can be broken by magnetic or Coriolis fields [Fig. 3(a)],
spin-lattice interactions in magnetic materials, etc. [3–14,
27–29]. The influence of TRS-breaking fields on Dirac
phonons is described by the Haldane term HT ¼ mTσzτz,
where the coefficientmT is proportional to the field strength
[12]. Importantly, ½S;HT � ¼ 0 and ½Jph; HT � ¼ 0, implying
that the phonon pseudospin and its pseudoangular momen-
tum remain well defined even when TRS is broken. The

FIG. 2. (a) Schematic of a nanoribbon structure including
an interface with opposite mK on the two sides, which has
topologically protected pseudospin-polarized interface states. An
armchair nanoribbon including 63 atom dimer lines with jmK j ¼
0.05 was considered, whose edge atoms in the uppermost and
lowermost three lines were fixed with infinite atomic masses for
eliminating trivial edge states. In the transport calculations, the
transport system included a center part together with two semi-
infinite contacts that were all composed of the armchair nano-
ribbon. Disorders were introduced over the whole center part that
contains two zigzag chains (or one unit cell of the nanoribbon).
(b) Phonon dispersion of the nanoribbon, showing in-gap inter-
face states that are pseudospin-momentum locked. (c) Phonon
transmission as a function of frequency ω for Δ ¼ 0, 0.1, 0.2.
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TRS-breaking field breaks the pseudospin degeneracy of
E1 and E2 bands and introduces a pseudospin splitting, as
shown in Fig. 3(b). This effect is a phononic analog of the
Zeeman effect, which we call the phonon pseudospin
Zeeman effect. The effect can be employed to manipulate
the phonon pseudospin, which is discussed more quanti-
tatively in Supplemental Material [47].
One significant feature of the effect is that the pseudo-

spin splittings of E1 and E2 are opposite, showing opposite
pseudospin g factors, which is essential to realize the QAH
effect [57]. Band gaps between E1 and E2 have different
values 2ðmK −mTÞ and 2ðmK þmTÞ for pseudospin up
and pseudospin down, respectively. The topology of this
band gap is identified by C↑ ¼ 1

2
sgnðmT −mKÞ, C↓¼

1
2
sgnðmTþmKÞ, and the total Chern number C¼C↑þC↓.
As summarized in the topological phase diagram
[Fig. 3(c)], the competition between mK and mT gives
four topologically distinct phases that are separated by
critical gapless states with jmKj ¼ jmT j. Phases A and B
belong to the zero-Chern-number class. Phases C andD are
not, which host the QAH-like states. Interfaces between
any two of these phases all have topologically protected
gapless states, comprised of one or two copies of pseudo-
spin-polarized one-way phonon modes [Fig. 3(d)].

Phonon pseudospin Hall effect.—The Berry curvature is
well known as a momentum-space magnetic field, which
introduces an anomalous velocity va ∝ E × Bk transverse to
the electric field, namely, the anomalous Hall effect of
electrons [31]. A similar effect could take place for phonons
[37] in the presence of a band-edge gradient Eeff that can be
generated by gradual variances of mass intensity, bonding
strength, etc. The effect is opposite for the two pseudospins
due to their opposite Berry curvatures, leading to a phonon
pseudospin Hall effect [depicted in Fig. 4(a)], which could
be applied to detect the phonon pseudospin.
Pseudospin-contrasting optical selection rule.—The two

phonon pseudospins have opposite pseudoangular momenta
at the Γ and, thus, can be selectively excited by circularly
polarized photons (left-handed σ− or right-handed σþ) due to
the conservation of (pseudo)angular momentum, as demon-
strated previously for the valley pseudospin [34,37].
Specifically, the infrared absorption of σþ photons mainly
excites onepseudospinwith jph ¼ þ1, and theStokesRaman
scattering absorbing σþ photons mainly excites one pseudo-
spin with jph ¼ þ2 by emitting σ− photons [illustrated in
Fig. 4(b)]. The opposite pseudospin can be excited as well by
reversing the helicity of absorbed light. This pseudospin-
contrasting optical selection rule can be used to generate the
phonon pseudospin, which is verified numerically by Raman
intensity calculations shown in Supplemental Material [47].
Using the pseudospin-polarized phonons as input, one can
realize a net phonon Hall current [depicted in Fig. 4(c)],
which avoids thecompensationbetween the twopseudospins.
Since the photon-phonon interactions involve only phonons
near the Γ, the infrared and Raman processes are typically
forbidden for Dirac phonons at the K and K0, which
demonstrates the advantage of using Kekulé phonons.
Many materials have degenerate Dirac phonons at the K

and K0, including but not limited to lattices with C3v or C6v
point group symmetry (e.g., graphene, silicene, germanene,

FIG. 3. (a) Schematic of a Kekulé lattice under a TRS-breaking
field [e.g., Coriolis (Ω) or magnetic (B) field]. (b) Phonon
dispersion (mK ¼ 0.1) of E1 and E2 bands with a TRS-breaking
mass of mT ¼ 0.05, showing the phonon pseudospin Zeeman
splitting. The pseudospin polarization was calculated by projecting
wave functions onto pseudospin eigenstates. (c) A topological
phase diagram for varying mK and mT , which is divided into four
parts characterized by different pseudospin Chern numbers (C↑,
C↓). (d) Topological interface states between two distinct phases
depicted in (c), calculated for interfaces between two semi-infinite
regions (jmK j ¼ jmT j ¼ 0.05) by the NEGF method.
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FIG. 4. (a) Schematic of a phonon pseudospin Hall effect under
a band-edge gradient Eeff (black arrow). The Hall currents are
opposite for pseudospin up (red curve) and pseudospin down
(blue curve). (b) Schematic of pseudospin-selective phonon
generation by infrared absorption and Stokes Raman scattering.
Circularly polarized photons (left-handed σ− or right-handed σþ)
mainly excite phonons of one pseudospin that conserves the
(pseudo)angular momentum. (c) By selectively generating pho-
nons of one pseudospin (e.g., using Raman spectroscopy), a net
phonon Hall current (blue curve) could be observed.
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and stanene). The Kekulé distortion could be introduced in
these materials by adatoms, substrates, external strains, etc.
[43,58–61]. As example studies, we investigated graphene on
the Sb2Te3 substrate and graphene under an external strain,
which show the Kekulé distortion by forming a

ffiffiffi

3
p

×
ffiffiffi

3
p

reconstruction [58–61]. Our first-principles phonon calcula-
tions found that the Kekulé distortion opens the phonon band
gap at the Γ as predicted theoretically (see Supplemental
Fig.S4), predictingKekulé phonons in realisticmaterials [47].
In conclusion, we proposed a new type of phonon

pseudospin in the Kekulé lattice, which offers an alternative
quantumdegree of freedom to control phonons and provides a
platform to explore phononic topological effects independent
of TRS breaking and pseudo-SOC. Based on their character-
istic features of quantized Berry phases and pseudoangular
momenta, we suggested some observable physical effects to
manipulate, generate, and detect the phonon pseudospin,
including topologically protected pseudospin-polarized inter-
face states, a phonon pseudospin Zeeman effect, a phonon
pseudospin Hall effect, and a pseudospin-dependent optical
selection rule of phonons. The findings generalize the valley
pseudospin physics that was developed originally for elec-
trons [31–36] and then for phonons [12,37–40]. Importantly,
the newphonon pseudospin ismore promising than the valley
pseudospin for infrared and Raman spectroscopy, which is
worth further studies in the future. Furthermore, the pseudo-
spin and topology-related physics revealed for phonons is
independent of particle statistics and applicable for other
particles, including electrons and photons.
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