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The functionality of many nonlinear and quantum optical devices relies on the effect of optical
bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we
report the resonance response and bistability of topological edge states. A balance between the pump, loss,
and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power
between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy
and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of
the propagation direction of the dominant edge state. Our results facilitate the development of practical
applications of topological photonics.
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The phenomenon of topological insulation and the
existence of the associated edge stateswere first encountered
and explained in electronic systems [1]. Nowadays these
ideas find application in such diverse areas as atomic
physics, matter waves, optics, and acoustics. Topological
insulators possess a forbidden energy gap in the bulk, where
no states can exist, butwhenplaced in contactwith amaterial
having different topological invariants (Chern numbers) [1]
they support the in-gap unidirectional topologically pro-
tected from scattering edge states propagating along the
interface. One of the prime near future applications of the
topological photonic and atomic states is perceived as
creation of topologically protected quantum information
processing and transmission devices [2–4].
In photonics, topological edge states have been proposed

theoretically and recently observed experimentally in many
systems; see, e.g., Refs. [5–19]. In particular, wewould like to
mention here arrays of coupled resonators [7,8], including the
ones with parametric nonlinearity [14], and the exciton-
polariton microcavities, where strong photon-exciton cou-
pling leads to the formation of the half-light half-matter
exciton-polariton quasiparticles [15–17]. It iswell known that
an interplay of nonlinearity, loss, and resonant pumping in
microcavities leads to a rich variety of dynamical effects,
most of which are underpinned by the existence of a pump
frequency range where the intracavity intensity becomes
bistable [20]. Majority of theoretical and experimental works
on photonic topological insulators has so far dealt with the
linear regime of light-matter interaction, but the interest in
nonlinear [13,14,18,19,21–24] and associated quantum [14]
effects is quickly gaining its pace. In this regard arrays of
nonlinear twisted waveguides [18,22,23] and nonlinear
exciton-polariton devices [19,21,24] hold strongest promise
for the near future experimental realization.Under a variety of
conditions nonlinear topological edge states in photonic

settings have been found to decay into trains of the edge
quasisolitons [21–24]. Nonlinear effects and solitons in
topological insulators are also emerging in a variety of
nonphotonic systems and the whole area is quickly acquiring
an interdisciplinary flavor [25–28].
Losses exist in any photonic system and they can

complicate observation and practical use of the topological
states [29]. When gain is present, then the threshold for
topological edge states may be lower than for other
available states providing favorable conditions for topo-
logical lasing [30–33]. However, when the pump is taken as
an external forcing a bistable regime of the operation of
topological photonic insulators may be expected, which has
not been so far predicted and demonstrated. Such resonant
pumping imprints both energy and momenta of the external
laser photons onto the microcavity polaritons. This raises a
question about the mere existence of the topological states
under such conditions [29,34].
Exciton-polariton condensates represent a very practical

example of dissipative nonequilibrium systems [35], where
bistability iswell established, see, e.g.,Ref. [36], and avariety
of periodic potentials [37–39] have been used for observa-
tions of one- and two-dimensional polariton lattice solitons
[40–42] and linear nontopological edge states [43,44].
Moreover, polaritons are quasiparticles with spin—see,
e.g., Refs. [35,45]—that demonstrate polarization-dependent
tunneling between the lattice sites [15,21,46,47] originating
in the fact that polaritons in a homogeneous planar resonator
have momentum-dependent linear coupling between the
states with positive and negative spins, which is formally
analogous to the spin-orbit coupling in atomic physics
[35,48,49]. Spin-orbit coupling is the key effect allowing
realization of the polaritonic topological insulators; see, e.g.,
Refs. [15,16,21,24,34]. For all these reasons an exciton-
polariton platform appears to be a natural choice for studying
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the properties of the topological insulator state in the
bistability regime.
The aim of this Letter is to demonstrate that topological

edge states persist in the presence of the resonant external
pump, loss, and nonlinear self-spin and cross-spin inter-
actions. These states can be resonantly excited when the
pump photon energy approaches the edge state energy of the
loss-free and pump-free system. We found that for suffi-
ciently strong pump values the resonance response curve tilts
enough in frequency to induce the bistable response of the
topological insulator and that polarization of the pump has a
profound impact on the power balance between the edge
states on the opposite sides of the lattice. We present first
stable nonlinear topological edge states and illustrate their
robustness upon interaction with structural lattice defects.
We describe the evolution of the spinor polariton con-

densate in a lattice of microcavity pillars, akin to those
fabricated in Refs. [46,47], using a system of coupled
Gross-Pitaevskii equations for the spin-positive and
spin-negative components of the polariton wave function
Ψ ¼ ðψþ;ψ−ÞT [24,35]:
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Here,m is the polariton mass, which is assumed 10−31 g;
β ¼ 0.3 is the dimensionless parameter characterizing
strength of the spin-orbit coupling [24,49]; ε0 is the
scaling coefficient having the dimension of energy, which
characterizes the nonlinear shift of the polariton energy
level ε0jψ�j2, relative to the linear resonance; X, Y, and T
are the physical distances and time, which are replaced
by the dimensionless coordinates ðx; yÞ ¼ ðX=L; Y=LÞ
and t ¼ Tε0=ℏ in our modeling. Here, L ¼ 1 μm,
ε0 ¼ ℏ2=mL2 ≃ 0.3 meV, and ℏ=ε0 ≃ 2 ps. The potential
energy landscape felt by polaritons is represented by
ℛðx; yÞ, which is assumed to be a honeycomb lattice of
micropillars with a single pillar described by the Gaussian
function −pe−½ðx−xmÞ2þðy−ynÞ2�=d2 , d ¼ 0.5, p ¼ 8. The pil-
lars are separated by the dimensionless distance a ¼ 1.4.
The lattice is truncated along the x axis, and it is kept
periodic along y with period 31=2a (Fig. 1). We use
truncation that creates so called zigzag edges, which are
considered throughout this Letter. Dimensionless Ω ¼ 0.5
is proportional to the applied magnetic field resulting in the
Zeeman energy splitting for the two spin states. We also
assume that polaritons with the same spin repel, while
polaritons with opposite spins weakly attract, σ ¼ −0.05
[36]. We consider resonant excitation of the microcavity
modes by the two-component pumpℋ�ðy; tÞ ¼ h�eiky−iεt,
where h� are the dimensionless amplitudes, k and ε are the
dimensionless momentum along the edge and normalized

pump frequency detuning (photon energy) from the polar-
iton resonance at zero momentum, respectively. The latter
also serves as a reference energy in this formulation.
γ ¼ 0.01 and ℏ=2γε0 ≃ 100 ps is the polariton lifetime
[50]. Results presented below are robust with respect to the
realistic changes of the parameter values and, in particular,
the bistability effect can also be found for shorter polariton
lifetimes encountered in poor quality samples.
We first introduce the energy spectrum and band

structure of the linear pump-free and loss-free system
[24]. We seek linear Bloch waves using a substitution
ψ�ðx; yÞ ¼ u�ðx; yÞeiky−iεt, where u� are periodic in y
with a period 31=2a and localized in x, and ε is a periodic
function of the momentum k with a period K ¼ 2π=31=2a.
We assume that the lattice is truncated at two points along x,
so that there are two zigzag edges. The time reversal
symmetry ðψþ;ψ−; tÞ → ðψ∗−;ψ∗þ;−tÞ violation by Ω ≠ 0
is a prerequisite for appearance of unidirectional edge states
[5]. A typical εðkÞ dependence around the lowest energy gap
and two in-gap topological edge states are shown in Fig. 1(a)
[24]. Remnants of Dirac points existing in a 2D lattice are
seen in the band part of the spectrum (black lines) in the
proximities of k ¼ K=3 and k ¼ 2K=3. Energies of the in-
gap topological edge states located at the left and right edges
of the stripe are shown in red and green, respectively. Dots
mark momenta where ε00 ¼ ∂2ε=∂k2 and, respectively, the
polariton mass associated with the edge modes change their
signs. The mass is positive in the upper half of the gap and

(a)

(c)

(b)

FIG. 1. (a) Energy of linear modes vs Bloch momentum for the
lattice with two zigzag edges. Black lines correspond to the bulk
modes, red and green lines to the edge states. A boundary at
which an edge state resides is indicated. Dots mark the momenta,
where the effective polariton mass changes its sign. (b) Schematic
illustration showing lattice of microcavity pillars periodic in the
vertical y direction, black circles with arrows show the direction
of rotation in vortices induced in the ψþ component, while yellow
arrows show currents in the topological edge states that are
opposite at opposite edges. Magnetic field B is also indicated.
(c) Full-scale lattice that was used in the simulations.
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negative in the lower one. The ψ− component of the edge
states has a larger amplitude than ψþ in this gap providing
Ω > 0. Qualitatively, the polariton spin-orbit coupling leads
to appearance of a vortex with charge −2 in the weak ψþ
component when strong ψ− has the trivial phase. These
vortices appear in each potential well and split into pairs of
charge −1 vortices due to perturbations, e.g., proximity of
the neighboringwells. The phase accumulation direction for
negatively charged vortices determines preferential direc-
tion of the edge state flow along the interface, which, for this
reason, has to be opposite at two interfaces; see Fig. 1(b).
Change of the magnetic field direction (sign of Ω) changes
the dominant spin component and, hence, the net vorticity
reverses its direction leading to the reversal of the propa-
gation directions of the edge states.
We anticipate that the pump ℋ�ðy; tÞ ¼ h�eiky−iεt

should resonantly excite the Bloch states of the linear
system having energy and momentum close to those of the
pump and well isolated from the continuum. Since there
exist two edge states for a given momentum k, two
resonances should in general show up within the gap. To
confirm the above conjectures and study the impact of
nonlinearity we seek nonlinear modes of the full system (1)
in the form ψ�ðx; yÞ ¼ u�ðx; yÞeiky−iεt, where u� obey

1

2
ð∂2

x þ ∂2
y þ 2ik∂y − k2Þu� − βð∂x ∓ i∂y � kÞ2u∓

−ℛu� ∓ Ωu� − ðju�j2 þ σju∓j2Þu� þ iγu�
− h� þ εu� ¼ 0. ð2Þ
We solved system (2) with a variant of the Newton

method applied in the momentum space using 201 and 25
spatial Fourier harmonics along x and y, respectively.
First, we discuss results for the linearly polarized pump

field, hþ ¼ h−; see Fig. 2. We fix the pump momentum to
k ¼ 0.4K and scan the pump energy within the gap. The
energy of the left edge state in pump-free system for this
value of momentum is located in the middle of the gap,
while the energy of the right edge state is very close to the
continuous spectrum; see Fig. 1(a) and the vertical lines in
Figs. 2(a),2(b). We found that the former state is resonantly
excited when the pump energy matches the resonance of
the unforced system, while the latter state does not make a
noteworthy response. Typical resonance dependencies of
the amplitude of the left edge state on energy detuning ε are
shown in Fig. 2(a) and the corresponding examples of the
transverse distributions of the polariton densities are shown
in the right column of the same figure. When the pump is
strong enough, the resonance curve acquires a pronounced
nonlinearity-induced tilt and forms a typical bistable loop;
see Fig. 2(a).
Figure 2(b) shows an average width wx of the edge state

calculated as per Ref. [51]. One can see that the best edge
localization is achieved close to the resonance and roughly
the same degree of localization is preserved throughout the

bistability interval of the energy values. Thus, the degree of
localization of the edge states in the externally forced polari-
tonic topological insulator can be controlled by varying
detuning ε. The right column of Fig. 2 also shows transverse
maps of the local polarization degree, ρ ¼ ðjψþj2 − jψ−j2Þ=
ðjψþj2 þ jψ−j2Þ, associated with the edge sates. The neg-
ative polarization (blue colors) dominates inside the pillars
located on the edge, but the positive polarization takes over
deeper inside the lattice within the bistability interval.
Polarization of the pump is another control parameter that

can be used tomanipulate the resonance response of the edge
states. We now change the pump polarization from linear to
circular and examine how the response of the edge modes is
modified as we scan the energy of pump photons within the
gap. In particular, we show the results for two pump choices:
fhþ ¼ 0.004; h− ¼ 0g and fhþ ¼ 0; h− ¼ 0.004g, and for
three values of the pump momentum k ¼ 0.4K, 0.51K, and
0.6K. The left column in Fig. 3 shows the maxima of the ψ−
amplitude on the left (red) and right (green) edges of the
lattice vs ε. Note that the Zeeman splitting and losses violate
the time reversal symmetry and therefore changing just the
polarization of the pump fromplus tominus does not result in
a symmetric transformation of the resonant curves.
Because ψþ is generally weaker than ψ− forΩ > 0 in the

pump-free limit, the spin-positive pump most typically
makes weaker resonances. To see this, compare maximal
amplitudes achieved at the left edge for different pump
polarizations; cf., the red dots in Figs. 3(a),3(c),3(e) showing
the spin-positive pump and in Figs. 3(b),3(d),3(f) showing the
spin-negative pump. The same simple argument does not
apply to the resonances corresponding to the modes on the
right edge and one can see that the maxima of the green
resonances in Fig. 3 are practically insensitive to the choice of
either the plus or minus polarized pump. We understand that

(a)

(b)

(c)

(d)

(e)

FIG. 2. Peak amplitude of spin-negative component (a) and x
width of the edge state (b) vs energy ε for the pump amplitude
h� ¼ 0.001, 0.002, and 0.004 at k ¼ 0.4K. Arrows indicate the
direction of the increase of the pump amplitude. Red dots
correspond to profiles (modulus jψ−j and local polarization
degree ρ) shown in the right column. Stable (unstable) states
are shown black (red) in (a) and (b). Vertical red and green lines
mark energies of linear pump-free edge states.
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this is related to the fact that for the states on the right edge the
group velocity is opposite to the pump momentum, which
impacts their excitation efficiency. Changing the pump
momentum to negative k < 0, reverses the resonance peaks
on the left and right edges in a symmetric fashion. An
interesting situation is encountered at k ¼ 0.51K when the
left and right edge states have close energies, see Figs. 3(c)
and 3(d). In this case by using different pump polarizations
one can selectively excite the state on the right edge only,
Fig. 3(c), or a combination of the two strongly localized states
with close amplitudes on the opposite edges; see Fig. 3(d).
We are returning to the case of the linearly polarized

pump hþ ¼ h−, for stability analysis. We use direct
numerical integration of Eqs. (1) with slightly perturbed

inputs ψ� ¼ u�ð1þ α�Þeiky, where α�ðx; yÞ is the broad-
band 1% noise and u�ðx; yÞ is the edge state. Such inputs
were allowed to evolve up to t ∼ 104, which has allowed us
to capture even weak instabilities and to accurately deter-
mine boundaries between stable and unstable edge states.
Stable states are shown in black in Figs. 2(a) and 2(b), while
the unstable ones are in red. The pump momentum in Fig. 2
is k ¼ 0.4K and falls into the interval of the positive
polariton mass. Performing similar simulations with the
pump momentum shifted to the negative mass interval have
not revealed a significant difference in the instability
scenarios. Instabilities appear only for sufficiently large
pump amplitudes close to the tip of the resonance. Within
the bistability domain solutions belonging to the upper
branch are usually unstable. However, close to the point
where middle and lower branches join a narrow detuning
interval exists where solutions from the upper branch can be
stable even within the bistability domain (for h� ¼ 0.004
the width of this domain is δε ≈ 0.006). Outside the
bistability domain the upper branch is always stable.
Moreover, corresponding stable edge states can be very
well localized, sometimes even better than states from the
tip of the resonance curve; see Fig. 2(b). The low amplitude
branches are always stable, while the middle branches are
always unstable. If bistability is absent at low h�, then the
entire branch of solutions is usually stable. The typical
dynamics of the instability development is shown in Fig. 4.
The instability leads to the modulation of the polariton
density along the edge and in the bulk of the lattice, and to
polarization rotation of the radiation pattern emerging inside
the bulk, so that the alternating regions with dominating
either spin-negative or spin-positive components propagate
from the edge into the bulk. The instabilities reported here
are likely to be associated with the complex underlying
four-wave mixing processes and their classical and quantum
properties require further investigation.
Finally, we modeled an impact of the structural perturba-

tions on dynamics of the edge states. We considered two
types of perturbations, which can be encountered in practical

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. The left column shows amplitude of the spin-negative
component on the left (red circles) and right (green circles) edges
versus detuning for different input polarizations indicated in each
panel: k ¼ 0.4K in (a),(b), k ¼ 0.51K in (c),(d), and k ¼ 0.6K in
(e),(f). Distributions of jψ−j in the right column correspond to the
energies marked with open circles. Vertical red and green dashed
lines mark energies of the linear pump-free edge states. The ampli-
tude h� of the nonzero pump component is 0.004 in all cases.

FIG. 4. Instability induced dynamics of the edge state from the
upper branch at ε ¼ −3.33, k ¼ 0.4K, h� ¼ 0.004. jψ−j and the
local polarization degree ρ are shown at the initial moment and in
the advanced stage of the instability development.
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devices. The first one is themissing pillar and the second one
is random fluctuations of the energy resonances between
different pillars associated with variations of the depth of the
local trapping potential they create for polaritons. We have
found that the propagation through the missing pillar results
in some local reshaping of the polariton density accompa-
nied by neither backscattering nor violation of the locali-
zation of the state around the lattice edge. In the case of
random fluctuations of the energy resonanceswe have found
that the fluctuations that are well below the energy value
corresponding to the width of the topological gap preserve
the edge states. However, the ones comparable and exceed-
ing the gap width destroy the edge states and lead to the
excitation of multiple modes in the bulk of the lattice.
Numerical data demonstrating structural stability and topo-
logical protection of the edge states in both of the above
cases are included in the Supplemental Material [52].
In summary, we have proposed a bistable polaritonic

topological insulator, where the external pump that compen-
sates intrinsic losses in the microcavity allows us to selec-
tively excite desired modes, including well-localized
topologically protected edge states. Bistability and instabil-
ities of topological states can find their use in development of
the topological quantum information processing schemes.
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