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The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves
travel at the speed of light, with deviations smaller than a few × 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance.
For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in
the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond
Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions
describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard
conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among
operators do not introduce further tuning of the models, since they are stable under quantum corrections.
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Introduction.—The association of the GW170817 [1] and
GRB170817A [2] events allowed one to make an extraor-
dinarily precise measurement of the speed of gravitational
waves (GWs): it is compatible with the speed of light with
deviations smaller than a few × 10−15 [3]. This measure-
ment dramatically improves our understanding of dark
energy and modified gravity. These scenarios are charac-
terized by a cosmological “medium” which interacts gravi-
tationally with the rest of matter. This medium, at variance
with a simple cosmological constant, spontaneously breaks
Lorentz invariance so that there is no a priori reason to
expect that gravitational waves, which are an excitation of
this medium, travel at the same speed as photons [4,5].
The measurement is of particular relevance since it

probes the speed of GWs over cosmological distances.
The change of speed might be locally reduced in high
density environments, but it is difficult to believe that this
screening effect can persist over distances of order 40 Mpc.
Moreover, one has to stress that this is a low-energy
measurement, at a scale as low as 10 000 km. For such
a low energy, one should be allowed to use the effective
field theory (EFT) of dark energy or modified gravity
which applies to cosmological scales. Actually, in the
theories we are going to study, the cutoff may be of the
same order as the measured GW momentum and high-
dimension operatorsmay play some role; however, one does
not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the
other hand, previous stringent limits from gravitational
Cherenkov radiation of cosmic rays [6] are only applicable
to high-energy GWs, well outside the regime of validity of
the EFTs describing dark energy and modified gravity.
Moreover, these bounds only apply to GWs traveling faster,
and not slower, than light. For other limits, see Refs. [7–10].

With these caveats in mind, in this Letter we want to
explore what the consequences are of this measurement in
the context of the EFT of dark energy [11–13] and in its
covariant counterpart, the Horndeski [14,15] and the
beyond Horndeski theories [16] (see, also, Ref. [17]). If
we impose that the absence of an effect is robust under tiny
variations of the cosmological history—say, a small varia-
tion of the dark matter abundance—we find that one needs
precise relations among the various coefficients of the
operators. This allows us to derive the most general scalar-
tensor theory compatible with GWs traveling at the speed
of light. Since the required relations must be satisfied with
great accuracy, given the experimental precision, one needs
to understand whether they are radiatively stable. We will
see that they are stable under quantum corrections due to
the nonrenormalization properties of these theories.
Consequences for the EFT of dark energy.—The EFTof

dark energy is a convenient way to parametrize cosmologi-
cal perturbations around a Friedmann-Robertson-Walker
(FRW) solution with a preferred slicing induced by a time-
dependent background scalar field. For the time being, we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on.
Expanded around a FRW background ds2 ¼ −dt2 þ

a2ðtÞdx⃗2 and written in a gauge where the time coincides
with uniform field hypersurfaces, the EFT action reads

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2�
2

fð4ÞR − Λ − cg00 þm4
2

2
ðδg00Þ2

−
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2
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2
δg00R −
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3
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Here, ð4ÞR is the 4D Ricci scalar, δg00 ¼ 1þ g00, δKν
μ ≡

Kν
μ −Hδνμ is the perturbation of the extrinsic curvature of the

time hypersurfaces (H ≡ _a=a), Rν
μ is the 3D Ricci tensor of

these hypersurfaces, and δK and R are, respectively, their
trace. For convenience, we have also defined

δK2 ≡ δK2 − δKν
μδK

μ
ν ; δG2 ≡ δKν

μR
μ
ν − δKR=2;

δK3 ≡ δK3 − 3δKδKν
μδK

μ
ν þ 2δKν

μδK
μ
ρδK

ρ
ν: ð2Þ

While M2� is constant, the other parameters are time-
dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations
in Horndeski (for ~m2

4 ¼ m2
4 and ~m6 ¼ m6) and beyond

Horndeski theories. At quadratic order, it has been introduced
in Ref. [18]. At higher order, we have written only the
operators that contribute to the leading number of spatial
derivatives. These dominate the nonlinear regime of structure
formation and the Vainshtein regime (see, e.g., Refs. [19–21]
for details). At quintic or higher order, there are no such
operators. The other operators present in Horndeski and
beyond Horndeski theories are not explicitly written but will
be discussed below.More general higher-order operators will
be considered below.
In Eq. (1), GWs only enter in the 4D and 3D Ricci tensor

and in the trace-free part of Kν
μ. At quadratic order, the

operator m2
4δK2 contributes to the graviton kinetic energy,

changing the normalization of the effective Planck mass—
which becomes M2 ≡M2�f þ 2m2

4—modifying the propa-
gation speed of gravitational waves [18,22],

c2T − 1 ¼ −2m2
4=M

2: ð3Þ
(Notice thatm2

4 can have either sign; it is written as a square
just to keep track of dimensions.) Thus, the constraint of
GW170817 implies that the coefficient of the operator
m2

4δK2 must be extremely small,

m2
4 ¼ 0: ð4Þ

However, the value of this parameter depends on the
particular background the EFT is expanded around. In
particular, by changing by a tiny amount the Hubble
expansion or the background energy density of the scalar
(or, correspondingly, the dark matter abundance), the
coefficients of the EFT action get reshuffled. A change
in the background appears in the EFT action as a back-
ground value for δg00 and δK. To robustly set to zero m2

4,
we should set to zero also all those operators that can
generate it by a small change of the background solution.
As an example, consider m2

5δg
00δK2. When δg00 is evalu-

ated on the background, this operator becomes quadratic
and shifts the parameter m2

4, i.e., δm2
4 ¼ m2

5δg
00
bkgd=2.

However, the change in c2T can be compensated by the
operator ~m2

4δg
00R if ~m2

4 is chosen appropriately. By
choosing

~m2
4 ¼ m2

5 ð¼ 0 in HorndeskiÞ; ð5Þ
these two operators combine to change the overall nor-
malization of the graviton action, keeping the graviton on
the light cone. (In Horndeski, m4 ¼ ~m4 ¼ 0.) The same
tuning must hold for operators with more powers of δg00

that have not been explicitly included in the action, such as
ðδg00Þ2R, ðδg00Þ2δK2, etc.
Let us consider the remaining operators, starting with

m6δK3. When one of the δKν
μ or δK in the cubic expression

for δK3 is evaluated on the background, this operator
becomes quadratic and contributes tom2

4. Using ðδKν
μÞbkgd ¼

δHbkgdδ
ν
μ, one finds δm2

4 ¼ δHbkgdm6. Notice that the
dependence on the background is through δHbkgd and not
through δg00bkgd, so that its contribution cannot be compen-
sated by either ~m2

4 or m
2
5. It is easy to get convinced that the

same happens for ~m6 andm7. When δg00 is evaluated on the
background, upon use of Eq. (8) of Ref. [18], one finds that
the operator ~m6 shiftsm2

4 by δm
2
4 ¼ − 1

2
ð ~m6δg00bkgdÞ·. Finally,

the operator m7 induces δm2
4 ¼ m7δg00bkgdδHbkgd. Since the

background enters differently in all these operators, they
must be precisely set to zero,

m6 ¼ ~m6 ¼ m7 ¼ 0: ð6Þ
As we will discuss below, the relations we found are stable
under radiative corrections.
Covariant action.—Let us see how the constraints of

GW170817 on the EFT of dark energy translate for
covariant theories. In particular, we consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp X

I

LI; ð7Þ

where we have defined the Lagrangians

L2 ≡G2ðϕ; XÞ; L3 ≡G3ðϕ; XÞ□ϕ;

L4 ≡G4ðϕ; XÞð4ÞR − 2G4;Xðϕ; XÞð□ϕ2 − ϕμνϕμνÞ
þ F4ðϕ; XÞεμνρσ εμ

0ν0ρ0σϕμϕμ0ϕνν0ϕρρ0 ;

L5 ≡G5ðϕ; XÞð4ÞGμνϕ
μν

þ 1

3
G5;Xðϕ; XÞð□ϕ3 − 3□ϕϕμνϕ

μν þ 2ϕμνϕ
μσϕν

σÞ
þ F5ðϕ; XÞεμνρσεμ0ν0ρ0σ0ϕμϕμ0ϕνν0ϕρρ0ϕσσ0 ð8Þ

that depend on a scalar field ϕ, X ≡ gμν∂μϕ∂νϕ and second
derivatives of the field. For convenience,we denote the scalar
field derivatives by ϕμ ≡∇μϕ, ϕμν ≡∇ν∇μϕ, and
□ϕ≡ ϕμ

μ. The symbol εμνρσ is the totally antisymmetric
Levi-Civita tensor, and a comma denotes a partial derivative
with respect to the argument. Horndeski theories are recov-
ered by the conditions F4ðϕ; XÞ ¼ 0 and F5ðϕ; XÞ ¼ 0,
which guarantee that the equations of motion are purely
second order. If L5 ¼ 0 and G4 − 2XG4;X ≠ 0 (L4 ¼ 0 and
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G5;X ≠ 0), it is possible to go beyond Horndeski by switch-
ing on F4 ≠ 0 (F5 ≠ 0) without propagating more than one
single scalar and thegraviton [16] (see, also,Refs. [23,24]). If
both L4 and L5 are present, the condition for the beyond
Horndeski theories to be degenerate [24] and propagate a
single degree of freedom is

XG5;XF4 ¼ 3F5½G4 − 2XG4;X − ðX=2ÞG5;ϕ�; ð9Þ

which can be obtained by imposing that bothLagrangians are
generated by the same disformal transformation [25]. In
summary, the quartic and quintic Lagrangians of beyond
Horndeski theories are described in terms of three indepen-
dent functions of ϕ and X.
To compare with the EFT approach, let us write the

relevant parameters in Eq. (1) in terms of the covariant
functions G4, G5, F4, and F5 above (of course, L2 and L3

do not affect GWs),

M2 ¼ 2G4 − 4XG4;X −XðG5;ϕ þ 2H _ϕG5;XÞ
þ 2X2F4 − 6H _ϕX2F5;

m2
4 ¼ ~m2

4 þX2F4 − 3H _ϕX2F5;

~m2
4 ¼ −½2XG4;X þXG5;ϕ þ ðH _ϕ− ϕ̈ÞXG5;X�;

m2
5 ¼ X½2G4;X þ 4XG4;XX þH _ϕð3G5;X þ 2XG5;XXÞ

þG5;ϕ þXG5;Xϕ − 4XF4 − 2X2F4;X

þH _ϕXð15F5 þ 6XF5;XÞ�;
m6 ¼ ~m6 − 3 _ϕX2F5; ~m6 ¼ − _ϕXG5;X;

m7 ¼
1

2
_ϕXð3G5;X þ 2XG5;XX þ 15XF5 þ 6X2F5;XÞ: ð10Þ

Setting the speed of GWs to 1, i.e., Eq. (4), implies that
the particular combination appearing in the expression of
m2

4 above vanishes. This must be true on any background
and, thus, must hold for any value of ϕ̈, H, and _ϕ (or X).
This implies, respectively,

G5;X ¼ 0; F5 ¼ 0; 2G4;X − XF4 þ G5;ϕ ¼ 0;

ð11Þ

for any X and ϕ. Thus, G5 can be at most a function of ϕ,
the beyond Horndeski term F5 must be absent, and there is
a relation between G4;X and F4 and their derivatives. The
first two conditions automatically imply Eq. (6). It is also
straightforward to verify that Eq. (5) is a consequence of
Eq. (11). Finally, using Eq. (11) in L4 and L5 of the
Lagrangians (8), after some manipulations and integrations
by parts, we remain with

LcT¼1 ¼ B2ðϕ; XÞ þ B3ðϕ; XÞ□ϕþ B4ðϕ; XÞð4ÞR

−
4

X
B4;Xðϕ; XÞðϕμϕνϕμν□ϕ − ϕμϕμνϕλϕ

λνÞ; ð12Þ

where B2 and B3 are new generic functions and we have
defined B4 ≡G4 þ XG5;ϕ=2. To show that this theory does
not change the speed of the tensors, we can decompose the
4D Ricci using the Gauss-Codazzi relation, and after some
integration by parts, one finds

LcT¼1 ¼ B2 þ B3□ϕþ B4ðRþ Kν
μK

μ
ν − K2Þ; ð13Þ

where Kν
μ, K, and R are, respectively, the extrinsic

curvature tensor, its trace, and the 3D Ricci scalar of the
uniform ϕ hypersurfaces. Note that from Eq. (11),
2B4;X ¼ XF4. Thus, in the absence of a beyond
Horndeski operator F4 ¼ 0, the second term in this
equation vanishes, and B4 is only a function of ϕ so that
we recover a standard conformal coupling to the 4D Ricci
scalar, i.e., B4ðϕÞð4ÞR.
So far, we have assumed that cT ¼ 1 is robust under

independent variations of H, _ϕ, and ϕ̈: indeed, both the
expansion history and ϕðtÞ change if one modifies, for
instance, the dark matter abundance. This, however, does
not happen in the particular cases when dark energy has a
fixed _ϕ independent of H. In the EFT language, one can
check that the change in g00 induced by a change δHbkgd is
of order ½c=ðcþ 2m4

2Þ�δHbkgd=H. If c ¼ 0 [and, therefore,
Λ in Eq. (1) is time independent], the variation of the
cosmological history does not give rise to a change in _ϕ.
Notice that dark energy acts like a cosmological constant at
background level. In this case, the condition m2

4 ¼ 0 does
not automatically require that G5;X and F5 vanish inde-
pendently, but it only requires that they are related by
G5;X þ 3XF5 ¼ 0, and only on the attractor solution.
However, this condition together with the degeneracy
equation (9) and m2

4 ¼ 0 imply the pathological value
M ¼ 0, unless G5;X and F5 separately vanish. In the EFT
language, one still has m6 ¼ ~m6 ¼ 0, but, in general, ~m2

4 ≠
m2

5 and also m7 is independent.
Radiative stability.—We saw that the observation of

GW170817 imposes, both in the EFT description and in
the covariant one, some precise relations among the
coefficients of various operators. Of course, it is crucial
to understand whether these relations are stable under
quantum corrections, otherwise, one would have to rely,
order by order in perturbation theory, on a 10−15 tuning. Let
us discuss this issue in the covariant theory. As discussed in
Ref. [26], the Horndeski theories inherit some of the
properties of the Galileons [27], for which the leading
operators cannot be generated by loop graphs. This strongly
constrains the size of quantum corrections in our case.
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Let us assume the functions G4 andG5 do not depend on
ϕ and are of the form

G4ðXÞ ¼
Λ8
2

Λ6
3

Ĝ4

�
X
Λ4
2

�
; G5ðXÞ ¼

Λ8
2

Λ9
3

Ĝ5

�
X
Λ4
2

�
: ð14Þ

To have sizeable dark energy effects, one takes
Λ2∼ðMPlH0Þ1=2 and Λ3∼ðMPlH2

0Þ1=3, where MPl is the
Planck mass. We take the dimensionless functions Ĝ to be
polynomials in their variable with order-one coefficients cn.
The result of Ref. [26] is that all these coefficients are
corrected by a relative amount of order δcn ∼ ðΛ3=Λ2Þ4∼
10−40. This is much smaller than the 10−15 cancellation
implied by the measurement of the speed of GWs: it is
completely negligible unless one goes to extraordinary
large n. The same conclusions can be obtained in a beyond
Horndeski theory [28]. In conclusion, the relations one has
to invoke to be compatible with GW170817 are technically
natural in the sense that once imposed at tree level, they are
stable under quantum corrections.
Higher-order operators and conformal transformations.—

It was recently pointed out that there are more general
theories than those in Eq. (8) that do not propagate
additional degrees of freedom [24]. In the EFT language,
they give rise to particular combinations of the quadratic
operators [29]
Z

d4x
ffiffiffiffiffiffi−gp M2

2

�
−
2

3
αLδK2 þ 4β1δKV þ β2V2 þ β3aiai

�
;

ð15Þ
where V ≡ − 1

2
ð_g00 − Ni∂ig00Þ=g00 and ai ¼ − 1

2
∂ig00=g00.

It is straightforward to see that these operators do not affect
the speed of GWs. This is true around the given background
but also if one considers different backgrounds: since these
operators have two derivatives, only δg00 can be turned on,
but it is easy to see that even around the new background,
GWs are unaffected.
In the covariant language, these theories can be obtained

starting from beyond Horndeski and performing a conformal
transformation that depends on X. Since this does not change
the light cone, if one starts from the action (12) also the
resulting degenerate higher-order theories will not affect
GWs’ speed of propagation. Under a general conformal
transformation gμν → Cðϕ; XÞgμν [30,31], we find (we
assume C is not linear in X)

LcT¼1 ¼ ~B2 þ ~B3□ϕþ CB4
ð4ÞR −

4CB4;X

X
ϕμϕνϕμν□ϕ

þ
�
4CB4;X

X
þ 6B4C;X

2

C
þ 8C;XB4;X

�
ϕμϕμνϕλϕ

λν

−
8C;XB4;X

X
ðϕμϕ

μνϕνÞ2: ð16Þ

(We do not explicitly show the expression of ~B2 and ~B3, since
they are anyway free functions unrelated to the other terms.)

This is the most general degenerate theory which can be
obtained fromHorndeski by a metric redefinition compatible
with c2T ¼ 1. In the classification of Ref. [24], it belongs to
type Ia degenerate higher-order scalar-tensor theories.
There are theories in which spatial (but not time) higher

derivatives are present and, therefore, do not propagate extra
degrees of freedom. In the case of the ghost condensate [32],
the modification of the GW speed goes as c2T − 1 ∼M2

GC=
M2

Pl, where MGC is the typical scale of the model. Since
experimental bounds on the modification of the Newton law
give MGC ≲ 10 MeV, one does not expect any significant
effect on the speed of GWs. On the other hand, in the case of
Einstein-aether [33] and Hořava gravity [34], cT is expected
to deviate from unity, and the bound of GW170817
represents a severe constraint on these models.
Disformal transformations.—So far, we have assumed

thatmatter isminimally coupled to themetric. There is no lack
of generality in this, provided there is a universal coupling for
all matter species, since one can always go to this framewith a
suitable conformal and disformal transformation. In this
frame, the results of GW170817 imply that GWs must travel
on the light cone of the metric. If one chooses to go to a
different disformal frame, bothmatter andGWswill acquire a
common disformal coupling: since they both travel at the
same speed, this is obviously still compatiblewithwhat LIGO
andVirgo observed. In the new frame, the gravitational action
will not be of the form (12) or (16). For example, one can
decide to disform the beyond Horndeski theories (12) to
become a Horndeski theory, but now both GWs and light will
not move on the geodesics of the metric.
Conclusion.—We have obtained the most general scalar-

tensor theories propagating a single scalar degree of freedom
compatible with the observation of GW170817. In the
Jordan frame, the parameters of the EFT of dark energy of
these theories must satisfy Eqs. (4)–(6). Analogous relations
must be imposed on the operators containing higher-order
terms in δg00. The most general covariant theory is given
by Eq. (16).
After GW170817, quartic and quintic Horndeski theories

are excluded, unless they reduce to a standard conformal
coupling to ð4ÞR. Consequently, the cubic and quartic
operators of Eq. (1) must be absent, which implies that
the Vainshtein mechanism allowed by them [19] cannot take
place (screening must rely only on the cubic theories) and
that no signatures of these nonlinear operators should be
found in the large-scale structures (see, e.g., Ref. [35]). For
beyond Horndeski theories, the Vainshtein mechanism is
broken inside compact bodies [20].We leave for the future to
study what consequence this has on the theories (16).
The relations that need to be satisfied are technically

natural, but it would be nice to investigate whether they can
be derived from some underlying symmetry. On the exper-
imental side, further observations over a larger distance and
at lower frequencieswill make the limits evenmore robust to
Vainshtein screening and higher derivative corrections.
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Note added in the proof.—Other articles [36–38] whose
content overlaps with ours appeared recently.
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