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The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational-wave signal
(GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of
gravity. We show that this measurement allows us to place stringent constraints on general scalar-tensor and
vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric
theories of gravity. These constraints severely reduce the viable range of cosmological models that have
been proposed as alternatives to general relativistic cosmology.
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Introduction.—The advanced Laser Interferometer
Gravitational Observatory (aLIGO) and the VIRGO inter-
ferometer, have recently announced the detection of gravi-
tational waves (GW170817) from the merger of a neutron
star (NS) binary located near NGC 4993 [1]. A γ-ray burst
(GRB 170817A), occurring within 1.7 sec, and in the
vicinity, of GW170817, was observed by the Fermi
Gamma-ray Burst Monitor, and the Anti-Coincidence
Shield for the Spectrometer for the International
Gamma-Ray Astrophysics Laboratory [2,3]. There is
strong evidence that this event is an electromagnetic
counterpart to the NS-NS merger [4,5]. Comparing the
travel time of light and gravitational waves (GW), we can
place stringent constraints on cosmological gravity, and
cosmology more generally [6–14].
We will assume that constraints on Lorentz violation in

the electromagnetic sector are sufficiently strong that the
speed of light is c ¼ 1. In vacuum, Lorentz symmetry
implies that all massless waves propagate at the speed of
light. However, when a medium is present, Lorentz
symmetry is spontaneously violated and propagation
speeds can differ. Alternative theories of gravity, directly
coupling extra degrees of freedom (d.o.f.) to curvature,
provide such a medium when the new d.o.f. takes a
configuration that defines a preferred direction (such as
the time direction in cosmology). The action for linearized
gravitational waves in such a medium takes the form

Sh ¼
1

2

Z
d3xdtM2�½ _h2A − c2Tð∇hAÞ2�: ð1Þ

We have decomposed the metric as gαβ ¼ ηαβ þ hαβ—with
ηαβ the Minkowski metric—by choosing locally inertial
coordinates with time chosen to be the direction defined by
the medium. We have expanded hαβ in polarization states
εA, with amplitudes hA, where A ¼ ×;þ. M� is the

effective Planck mass, which in media provided by alter-
native gravity theories can differ from the standard MP. cT
is the speed of gravitational waves; we will find it
convenient to parametrize this as [15],

c2T ¼ 1þ αT: ð2Þ

In principle, αT could adopt either positive or negative
values. However, negative values (cT < c) are constrained
to αT > −10−15 by a lack of observed gravi-Čerenkov
radiation from cosmic rays [16]. Up to now, the only upper
bound on the propagation of GWs comes from measuring
the travel time between the two detectors of aLIGO, and is
αT < 0.42 [17,18].
In the regime we are considering (a gravitational wave

propagating in effectively empty space, other than the
medium provided by the new d.o.f.) the linearized action
(1) is sufficient. It is conceivable (but unlikely) that there
may be some exotic behavior close to the GW sources, in
regions of strong gravity (for example, as occurs with the
screening of scalar forces) that leads to nonlinear correc-
tions. Such effects could alter GW production, but will have
no bearing on the gravitational-wave propagation during
the bulk of its travel time. Also, though Eq. (1) is valid for a
wide range of gravitational theories, it does not encompass
bimetric theories.
Constraint on tensor speed excess.—Let us illustrate

how aLIGO and the Fermi monitor have obtained the
constraint in Ref. [1]. We consider the geometric optics
limit of Eq. (1) so that cT is indeed the speed of
gravitational waves. Let ts be the time of emission for
both the gravitational waves and photons; there can be a
delay of up to 1000 sec which will not change our
conclusions. Let tT be the merger time identified in the
gravitational-wave train, and tc be the measured peak
brightness time in the optical signal. The transit distance
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of the GW and photon signals are cTðtT − tsÞ ¼ ds and
ðtc − tsÞ ¼ ds, where ds ≃ 40 Mpc is the distance to the
source. Defining Δt≡ tc − tT , we have Δt=ds ¼ 1 − 1=cT .
Taylor expanding this gives αT ≃ 2Δt=ds; an arrival delay
of Δt≃ 1.7 sec implies that

jαT j ≲ 1 × 10−15: ð3Þ
Comparing this to current cosmological constraints

(where σαT ∼ 1 [19]) or forecast cosmological constraints
(where σαT ∼ 0.1 [20]), this constraint is remarkable. For all
intents and purposes, we will hereafter consider αT ≃ 0 and
attempt to understand its consequences for cosmology.
Implications for scalar-tensor theories.—We begin by

considering scalar-tensor theories. The Horndeski action is
the most general scalar-tensor theory with second-order
equations of motion [21,22], and is given by S ¼R
d4x

ffiffiffiffiffiffi−gp fP5
i¼2 Li½ϕ; gμν� þ LM½gμν;…�g, where LM is

the minimally coupled matter action. The scalar field
Lagrangian is built of four terms: two minimally coupled
to gravity, L2 ¼ K and L3 ¼ −G3□ϕ, and two terms
explicitly involving the Ricci curvature R and the
Einstein tensor Gμν:

L4 ¼ G4Rþ G4;Xfð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕg;

L5 ¼ G5Gμν∇μ∇νϕ −
1

6
G5;Xfð∇ϕÞ3 − 3∇μ∇νϕ∇μ∇νϕ□ϕ

þ 2∇ν∇μϕ∇α∇νϕ∇μ∇αϕg: ð4Þ
Here K and Gi are functions only of ϕ and
X ≡ −∇νϕ∇νϕ=2, and subscript commas denote deriva-
tives. On a cosmological background, Horndeski models
give [23,24]

M2�αT ≡ 2X½2G4;X − 2G5;ϕ − ðϕ̈ − _ϕHÞG5;X�; ð5Þ

where M2� ≡ 2ðG4 − 2XG4;X þ XG5;ϕ − _ϕHXG5;XÞ.
One way of satisfying αT ∼ 0 is through a delicate

cancellation between G4;X, G5;ϕ and G5;X. If G5;X ¼ 0,
then G5;ϕ can be integrated by parts in the action to a form
equivalent to G4 [25,26]. This cancellation is then just the
statement about G4;X ¼ 0. A nontrivial cancellation would
not only have to be time dependent, but also sensitive to the
matter content of the Universe due to the dependence on H
and ϕ̈. Thus, even a small change in, e.g., the dark matter
density, or deviations from isotropy and homogeneity,
would severely violate it. Furthermore, any such a can-
cellation would be accidental, with no symmetry to protect
it. Some shift symmetric Horndeski actions (i.e., not
dependent on ϕ) are, to some degree, stable to radiative
corrections. In flat spacetime, for K;Gi linear in X
(Galileons [27]), there exists an exact quantum nonrenorm-
alization theorem [28–30]—there are no corrections to
these operators. The corrections remain under control when
the Galilean symmetry is weakly broken [31], as it must be

in curved spacetime. In this case, the Horndeski inter-
actions are suppressed by a scale Λ3, whereas quantum
corrections enter suppressed by the parametrically larger
scale Λ2 ≫ Λ3, which satisfies Λ4

2 ¼ MPlΛ3
3 [31]. A typical

value is Λ3 ∼ 10−13 eV, leading to Λ3=Λ2 ∼ 10−10. With
relatively mild assumptions on the Gi functions, this can be
shown to lead to order ðΛ3=Λ2Þ4 ∼ 10−40 corrections on the
Gi [31,32]. Thus, however difficult a classical cancellation
in αT , Eq. (5), at the required level of 10−15 would be,
arranging for it to remain under radiative control is feasible.
Nonetheless, a more natural interpretation of the con-

straint (3) is that each of the terms (G4;X, G5;ϕ, G5;X)
contributing to αT is zero, i.e., that L5 ∝ Gμν∇μ∇νϕ,
vanishing identically as a result of the Bianchi identity,
while L4 ¼ fðϕÞR, i.e., the coupling to gravity can at most
be of the Jordan-Brans-Dicke (JBD) type. Setting G5;X ¼ 0

means that we avoid dependence on a fine-tuned back-
ground throughH as well as on the (quantum) corrections it
receives. Radiative corrections to αT , even in the presence
of a G3 term, are still 10−40.
Such a restriction reduces the viable Horndeski models to

two classes: in class (i), the scalar does not evolve signifi-
cantly on cosmological time scales. This is the generalized
JBD class, including models such as fðRÞ gravity. Such
models require chameleonic screening to evade Solar
System tests of gravity, and, therefore, cannot have a
background evolution significantly different from that of
concordance cosmology; they do not self-accelerate cos-
mological expansion [33,34]. The sound speed of the scalar
fluctuations is equal to that of light. On the other hand, the
strength of the fifth force, f;ϕ, is allowed to be similar to
gravity.
In class (ii), the scalar evolves quickly, X ∼H2M2�, and

noncanonical kinetic terms in K and G3 play a significant
role: they can give rise to acceleration without a cosmo-
logical constant, significantly changing the equation of
state and the sound speed (see also Ref. [35]). If they are to
be the mechanism for acceleration, constraints on the
evolution of the Planck mass [36,37] restrict the strength
of coupling to gravity f;ϕ to be small, since the scalar runs
during the entire history of the universe in these models. We
reiterate that perturbative control of quantum corrections in
the fast-moving models depends on shift symmetry, which
would disallow any dependence on ϕ in the action,
specifically the conformal coupling fðϕÞ.
Horndeski theory is not the most general scalar-tensor

theory propagating one single extra d.o.f. New terms can be
added to construct the “beyond” Horndeski Lagrangian
[38–40] at the price of third derivatives in equations of
motion and new constraints to remove any extra d.o.f.
naively implied by them. This extension is described by
two new free functions, ~G4ðϕ; XÞ and ~G5ðϕ; XÞ correcting
L4 and L5 (see Ref. [39] for the complete expressions) and
modifying Eq. (5) to

PRL 119, 251301 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
22 DECEMBER 2017

251301-2



αTM2� ¼ 4XðG4;X − ~G4;X − G5;ϕÞ − 2ϕ̈XG5;X

þ 2 _ϕHXðG5;X − ~G5;XÞ; ð6Þ

where M2� ¼ 2G4 − 4XðG4;X − ~G4;XÞ þ 2XG5;ϕ − 2 _ϕHX×

ðG5;X − ~G5;XÞ.
It is clear fromEq. (6) that one option is to set all the terms

contributing to αT to zero, as in the Horndeski case. An
intriguing alternative is to choose G;5X ¼ ~G5;X ¼ 0 and
~G4;X ¼ G4X − G5;ϕ, which indeed leads to αT ¼ 0 but also
allows forM� ≠ MP and αH ≠ 0, where αH is the additional
beyond-Horndeski parameter introduced in Ref. [39].
Although it is beyond the scope of this work to discuss
the properties of this particular model, we should emphasize
that this is the only algebraic choice for theGi functions that
ensures αT ¼ 0, regardless of the underlying cosmology.
In our discussion of scalar-tensor theories, we should

briefly mention degenerate higher-order scalar-tensor
(DHOST) theories [41,42]. DHOST theories are con-
structed to be a further generalization of Horndeski, but
have to include new constraints to avoid Ostrogradsky
instabilities. The result is a long list of classes of theories
(≃30) having disjoint parameter spaces, but which on a
cosmological background reduce to just two types [43].
One is unstable and thus irrelevant here. The other can be
transformed to beyond Horndeski with a conformal trans-
formation of the form ~gμν ¼ CðXÞgμν. Conformal trans-
formations leave null geodesics null. Thus, if a DHOST
model describes gravity in cosmology, then the require-
ments for αT ¼ 0 listed above apply to the beyond-
Horndeski counterpart of the DHOST theory.
To conclude, if we assume that it is not possible to

enforce precise cancellations for the reasons discussed
above, the constraint on αT excludes such models as the
quartic and quintic Galileon or a generic beyond
Horndeski, leaving only models which are conformally
coupled to gravity. On the other hand, models where
gravity remains minimally coupled remain unconstrained:
fast-moving models such as kinetic gravity braiding [44]
can give rise to self-acceleration and admit an interpretation
as the dynamics of a superfluid [45], rather than as a
modification of gravity. Finally, quintessence models
remain unconstrained.
Implications for vector-tensor theories.—We now turn to

vector tensor theories of gravity, i.e., theories where the
additional gravitational d.o.f. is given by a 4-vector, Aμ. First,
we consider generalized Einstein-Aether gravity, where Aμ is
timelike and the action is S ¼ R

d4x
ffiffiffiffiffiffi−gp ½ðM2

P=2ÞRþ
F ðKÞ þ λðAμAμ þ 1Þ�, where λ is a Lagrange multiplier,
K ¼ c1∇μAν∇μAν þ c2ð∇μAμÞ2 þ c3∇μAν∇νAμ (with ci
constants) and F ðxÞ is an arbitrary function (we have not
included the “c4” term as it does not affect tensor modes)
[46,47]. In this model αT ¼ −ðc1 þ c3ÞF ;K=½1þ ðc1þ
c3ÞF ;K�, so the constraint on αT implies c1 ¼ −c3. On

perturbed Minkowski space, this reduces the theory to the
Maxwell action (with a timelike constraint) supplemented
by c2ð∇μAμÞ2. On a cosmological background, we have
3M2

PH
2 ¼ ðρ − F=2Þð1 − 3c2F ;KÞ, whereas the effective

Planck mass in Eq. (1), which is generally given by
M2� ¼ M2

P½1 − ðc1 þ c3ÞF ;K�, will reduce to the GR value.
A second class of vector-tensor theories of interest are ge-

neralized Proca theories [48,49], whose 4D action is, much
like Horndeski theory, given by S ¼ R

d4x
ffiffiffiffiffiffi−gp ðLþ LMÞ;

L ¼ P
6
i¼2 Li, where the vector field Lagrangian is built so

that precisely one extra (longitudinal) scalar mode prop-
agates in addition to the two usual Maxwell-like transverse
polarizations. The individualLi are given by two minimally
coupled terms L2 ¼ G2ðX;F; YÞ and L3 ¼ G3ðXÞ∇μAμ,
and two nontrivial terms given by

L4 ¼ G4ðXÞRþG4;XðXÞ½ð∇μAμÞ2 þ c2∇ρAσ∇ρAσ

− ð1þ c2Þ∇ρAσ∇σAρ�;

L5 ¼ G5ðXÞGμν∇μAν −
1

6
G5;XðXÞ½ð∇μAμÞ3

− 3d2∇μAμ∇ρAσ∇ρAσ − 3ð1 − d2Þ∇μAμ∇ρAσ∇σAρ

þ ð2 − 3d2Þ∇ρAσ∇γAρ∇σAγ þ 3d2∇ρAσ∇γAρ∇γAσ�:
ð7Þ

As usual, Fμν ¼ ∇μAν −∇νAμ, c2 and d2 are constants,
G3;4;5 are arbitrary functions of X ¼ − 1

2
AμAμ and G2 is a

function of X;F ¼ − 1
4
FμνFμν; Y ¼ AμAνFα

μFνα. There is
also an additional term L6 with a free function G6ðXÞ and
L5 can be extended by a term controlled by a free function
g5ðXÞ [50,51], but here we will not give these terms
explicitly, since they do not affect (linearized) tensors.
On a cosmological background Aμ ¼ ðA; 0⃗Þ and αT is
given by

αT ¼ A2½2G4;X − ðHA − _AÞG5;X�=qT; ð8Þ

where qT ¼ 2G4 − 2A2G4;X þHA3G5;X. Analogously to
the scalar-tensor case considered above, if αT ¼ 0we either
then have to carefully tune the functional dependence ofG4

and G5 to satisfy this criterion (all the considerations about
radiative stability, time dependence, and background sym-
metry we discussed for Horndeski theories hold), or
consider a theory with minimal higher-order interactions
by requiring G4;X ¼ G5;X ¼ 0 leading to L4 ∝ R and
L5 ∝ Gμν∇μAν. In the latter case, ghost freedom for tensor
perturbations then enforces G4 > 0, while ghost and
gradient instabilities for vector modes are automatically
satisfied.
In generalized Proca theories the equation of motion for

Aμ separates the evolution into two branches, one with a
nondynamical scalar d.o.f. and a second one with full
dynamics for all three d.o.f., which we will focus on here.
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Requiring G4;X ¼ G5;X ¼ 0 (and hence αT ¼ 0) as above,
the modified Friedman equation then becomes
3H2 ¼ ðρ −G2Þ=ð2G4Þ, and thus 2G4 describes a rescaled
constant Planck mass. We note that on the de Sitter fixed
point of this model [52], in the limit ρ ¼ 0, consistency will
enforce G2 < 0, due to the ghost-freedom condition for
tensor perturbations G4 > 0.
One can go a step beyond generalized Proca theories and

consider the beyond generalized Proca model of Ref. [53].
Here four new free functions enter at the level of the action,
denoted f4, f5, ~f5; ~f6. Of the new functions only f4 and f5
affect the background evolution and that of linear tensor
perturbations, whereas the remaining functions only affect
linear vector and scalar perturbations. The αT ¼ 0 con-
straint now implies G5;XðHA − _AÞ − 2G4;X ¼ 2f4A2þ
6f5HA3, which depends on the new functions f4, f5. If
we choose to set all participating functions to zero to ensure
αT ¼ 0, this means both the background and tensor
perturbations will behave exactly as in the generalized
Proca case considered above.
Implications for bigravity theories.—We now consider

modelswith twocoupledmetrics. The only nonlinear Lorentz
invariant ghost-free possible interactions are given by the
deRham-Gabadadze-Tolley (dRGT) potential [54–56].
The action is given by S¼ðM2

g=2Þ
R
d4x

ffiffiffiffiffiffi−gp
RgþðM2

f=2Þ×R
d4x

ffiffiffiffiffiffi
−f

p
Rf−m2M2

g

R
d4x

ffiffiffiffiffiffi−gp P
4
n¼0βnenð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þ, where

we have two dynamical metrics gμν and fμν with their
associated Ricci scalars Rg and Rf, and constant mass scales
Mg and Mf, respectively. Here, βn are free dimensionless
coefficients, whilem is an arbitrary constant mass scale. The
dRGT potential is defined in terms of the functions enðXÞ,
which correspond to the elementary symmetric polynomials
of the matrixX ¼

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
. For simplicity, let us assume that

matter fields are coupled minimally to the metric gμν, and all
the parameter βs are of order 1.
The bigravity action generally propagates one massive

and one massless graviton; and the field gμν will be a
combination of both modes. The massless mode has a
dispersion relation given by E2

0 ¼ k2, while the massive
mode has E2

m ¼ k2 þm2 (with omitted factors of β s of
order 1) on Minkowski space (and a de Sitter phase, i.e.,
late times). Let us first discuss the restricted case of massive
gravity, whenMf=Mg → ∞, and only the massive graviton
propagates (while the metric fμν is frozen). In this case, the
dispersion relation of gravitational waves is E2 ¼ k2 þm2.
As a result, the speed of GW will be frequency dependent
leading to a phase difference in the waveforms. Bounds
from GW150914 led to m ≤ 1.2 × 10−22 eV [57]. With an
EM counterpart to the GWs, the bound of 1.7 sec on the
time delay also leads to m≲ 10−22 eV (note that we have
considered a frequency region of interest of 10–100 Hz and
ignored the frequency dependency of the velocity, which is
small) which is uncompetitive with Solar System fifth-force

constraints of orderm≲ 10−30 eV (see Ref. [58] for quartic
Galileons). In the case of massive bigravity, assuming
similar amplitudes for both modes and Mg ¼ Mf ¼ MP,
one has a fast oscillation with a slowly modulated ampli-
tude. The frequency of the modulated wave is proportional
tom and hence negligible compared to the time scale of the
NS merger. The dispersion relation of the fast mode is
effectively that of a massive graviton E2 ¼ k2 þm2 (omit-
ting again factors or order 1), and thus one obtains the same
constraint as for massive gravity. Note that we assumed the
mass to be smaller than LIGO’s relevant frequencies, so this
result holds for bigravity models that can play a cosmo-
logical role but do not describe dark matter [59–61].
Unlike for scalar-tensor and vector-tensor theories, in

massive gravity, local constraints from GW propagation
have no bearing on cosmology. In particular, the existence
of scalar and tensor instabilities [62,63], in particular,
branches of the background cosmology will be uncon-
strained by the measurements discussed in this Letter. Note
that we have constrained these bimetric models only using
information on the propagation speed of GW, although
further constraints can be found from the entire GW
waveform. Further discussion on the waveforms can be
found in Refs. [64–66]. Constraints in the case where both
metrics are coupled to matter are discussed in Ref. [67].
Caveats.—We now address possible caveats. For a start,

the source lies at a very low redshift (zs ¼ 0.01); thus our
constraint is on the speed of GWs today. It would of course
be a great coincidence if αT were to vanish now with such
precision, but not at other times. However, this is, in
principle, a possibility.
Another uncertainty is the extent to which the effective

metric relevant for the propagation of perturbations with
wavelengths similar to the size of the universe, as studied in
cosmology, is the same one that is experienced by the GW
with the wavelength of 3000 km (to which aLIGO/VIRGO
are sensitive). For cosmological modes with wavelengths of
10–100 Mpc, taking the background—the medium in
which fluctuations propagate—to be isotropic and homo-
geneous is a good approximation. Wavelengths probed by
aLIGO/VIRGO are much shorter than the typical size of
structures in the universe, so the GW should be sensitive to
the inhomogeneities. Indeed, one can argue that, apart from
the initial exit from the source galaxy and the final entrance
into the Milky Way, the GW was mostly propagating
through space with density of matter significantly below the
current cosmic average, when averaged over scales of the
order of the GW’s wavelength.
Some alternative theories of gravity depend crucially on

a highly nonlinear response to the matter density by the
extra d.o.f. (the need for screening on Solar System scales).
This may well mean that the GW speed predicted for an
averaged cosmology, and that for the matter density along
the particular trajectory this GW took could be different.
Thus, there would not be a simple connection between the
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time delay observed and the properties of gravity on
cosmological scales. We would argue that, if such an effect
is relevant, then the GWwould be propagating with a speed
which the cosmological modes will experience when the
universe has emptied out to the same extent as the averaged
density along the trajectory of the GW. If αT is evolving, we
may well have measured its asymptotic future value.
Conclusions.—The detection of GW170817, together

with its EM counterpart (GRB 170817A), bounds the speed
of gravitational waves to deviate from c by no more that
one part in 1015. This single fact has profound repercus-
sions for extended gravity models motivated by cosmic
acceleration. We stress that models of fifth forces acting
only on astrophysical scales remain viable. One way to see
this is to note the presence of G4 in, for example, the
denominator of Eq. (5); one can have G4 ≃M2

P ≫
G4;ϕ; G4;X. Therefore, for theories with heavy d.o.f. acting
on subHubble scales, the denominator of Eq. (5) domi-
nates, and αT ≃ 0. Likewise, a d.o.f. that does not evolve on
cosmological time scales (at the background level—such
that X ≃ 0), also satisfies αT ≃ 0.
We summarize here the key consequences explained in

this Letter: (i) Assuming no finely-tuned cancellations
between Lagrangian functions occur, the only viable
Horndeski scalar-tensor theories have a coupling to gravity
of the form ∝ fðϕÞR (plus nongravitational terms), i.e.,
conformally coupled theories. This eliminates, for example,
the quartic and quintic Galileons (and hence all Galileon
cosmologies, given ISW constraints on the cubic Galileon
[68]). (ii) In this remaining class, the only surviving self-
accelerating theories must be shift symmetric or very nearly
so, and thus can have at most a small conformal coupling to
gravity. Models in this category include kinetic gravity
braiding and k essence. (iii) The beyond Horndeski exten-
sion of scalar-tensor theories introduces only one further
surviving model, which is also conformally coupled to
gravity. (iv) For vector fields, assuming no finely-tuned
cancellations, (generalized) Einstein-Aethermodels are now
subject to the stringent relation c1 ¼ −c3. (v) Beyond and
standard generalized Proca models, assuming no finely-
tuned cancellations, behave identically at background level,
with vastly simplified higher order gravitational inter-
actions, such as a coupling to R, where the proportionality
constant acts as a rescaled Planck mass in the Friedmann
equations. (vi) In the bimetric theories the mass of the
graviton is constrained to bem≲ 10−22 eV (assuming equal
Planck masses for bigravity), which is weaker than current
Solar System bounds but entirely independent of them. This
constraint has no bearing on cosmology.
For the first time, powerful and general statements can be

made about the structure of (non-)viable gravitational
actions, and some current popular models are ruled out
(also see Refs. [32,69–71]). These decisive statements will
undoubtedly shape the direction of future research into
extensions of general relativity.
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