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In analogy to spontaneous breaking of continuous space translation symmetry in the process of space
crystal formation, it was proposed that spontaneous breaking of continuous time translation symmetry
could lead to time crystal formation. In other words, a time-independent system prepared in the energy
ground state is expected to reveal periodic motion under infinitely weak perturbation. In the case of the
system proposed originally by Wilczek, spontaneous breaking of time translation symmetry cannot be
observed if one starts with the ground state. We point out that the symmetry breaking can take place if the
system is prepared in an excited eigenstate. The latter can be realized experimentally in ultracold atomic
gases. We simulate the process of the spontaneous symmetry breaking due to measurements of particle
positions and analyze the lifetime of the resulting symmetry broken state.
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Hamiltonians of condensed matter systems are invariant
under translation of all particles by the same vector in space
and so are the eigenstates. Consequently, the probability
density for detection of a single particle must be uniform in
space if a system is prepared in the ground state or any other
eigenstate. Space crystals emerge due to spontaneous
symmetry breaking that can be induced by an external
perturbation or by, e.g., measurements of particle positions.
If the single particle probability density is uniform but the
density-density correlation function reveals periodic behav-
ior, measurement of a position of a particle breaks the
continuous space translation symmetry and the probability
density for the detection of a next particle shows crystalline
structure [1,2]. In the thermodynamic limit, the lifetime of
the symmetry broken state goes to infinity and a stable
space crystal is formed.
A similar phenomenon was postulated to exist in the time

domain [3]. Spontaneous breaking of the continuous time
translation symmetry in the ground state of themodel system
was suggested to lead to periodic motion of a nonuniform
density. Soon another experiment involving trapped ions in a
ring [4] was proposed. However, at the same time, the
original proposition was put in question [5,6]. While the
discussion interestingly evolved [7–13] strong arguments
have been presented [14–16] against the existence of time
crystals. The proposals, nevertheless, became inspiring and
triggered a new field of research. It turns out that, by analogy
to condensed matter physics, where space periodic poten-
tials allow for modeling of space crystals, periodically
driven systems can model crystalline behavior in time
[17]. Anderson localization and the Mott insulator phase
in the time domain can be realized [18–20] and spontaneous
breaking of discrete time translation symmetry to another
discrete symmetry can be investigated [17]. The latter

phenomenon, termed discrete time crystal, was recently
observed in two experiments [21,22] following independent
theoretical suggestions [23–29]. Those propositions, con-
trary to the original work [17], relied on the many-body
localization phenomenon stabilizing the proposed phase in
the presence of the disorder.
The original idea of forming the time crystal by sponta-

neous symmetry breaking [3] negated by others [14–16]
considered the ground state of the system studied. However,
all eigenstates of a time-independent Hamiltonian system
trivially possess a continuous time translation symmetry
being stationary states. In the present work we point out that
for some of those eigenstates, even highly excited ones,
spontaneous breaking of this continuous time translation
symmetry to a discrete one can be realized even in the
limit of an infinite number of particles. Such excited
eigenstates can be prepared in ultracold atoms laboratories
and effects due to the spontaneous symmetry breaking can
be observed experimentally. Let us stress that this propo-
sition is orthogonal to recent works on discrete or Floquet
time crystals [17,21–29] and relies on the continuous time
translational symmetry breaking.
Before we proceed, it is necessary to clarify the defi-

nition of time crystals. In the space crystal case, the
crystalline structure is defined as a periodic behavior of
the probability density for the measurement of particle
positions in space at a fixed moment of time. In the case of
time crystals the role of space and time are exchanged. That
is, we should fix the position coordinate in the configu-
ration space and look for periodic behavior of the detection
probability versus time [4,9,13]. In other words, a detector
is placed at a certain position and periodic clicking of the
detector in time is expected. This definition of time crystals
does not require the thermodynamic limit that is usually
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considered in condensed matter physics as in Ref. [16]; i.e.,
we do not need the volume of the system V → ∞ because
we do not need to ensure periodic behavior (or any other
behavior) in space. However, in order to deal with a time
crystal we have to ensure that once the symmetry is broken,
the quantum evolution reveals periodic behavior forever.
The latter can be fulfilled in Wilczek’s model if the number
of particles N → ∞ but N times the coupling constant g0 is
fixed which constitutes the standard mean field limit in
ultracold atomic gases. In order to observe time crystal
behavior of an excited eigenstate, the thermal cloud has to
be sufficiently eliminated to prevent dissipation. That again
is possible in ultracold atoms.
We consider Wilczek’s model [3] of time crystals where

N bosons move on a one-dimensional Aharonov-Bohm
ring of unit length and interact via an attractive contact
potential. The quantum Hamiltonian of the system reads

H ¼
XN

i¼1

ðpi − αÞ2
2

þ g0
2

X

i≠j
δðxi − xjÞ; ð1Þ

where α is the constant parameter that can be interpreted as
a magnetic flux through the ring and g0 < 0 determines the
strength of the attractive interactions between particles. We
assume m ¼ ℏ ¼ 1.
Let us begin with the analysis of the α ¼ 0 case. In order

to find the ground state for bosons one can apply the mean
field approach where the N-body ground state can be
approximated by a product state ψ ¼ Q

N
i¼1 ϕ0ðxiÞ with ϕ0

being the lowest energy solution of the Gross-Pitaevskii
equation,

�
−
1

2
∂2
x þ g0ðN − 1Þjϕ0j2

�
ϕ0 ¼ μϕ0; ð2Þ

μ being the chemical potential. For small negative values of
g0ðN − 1Þ, the ground state solution of the Gross-Pitaevskii
equation on the ring is uniform, i.e., ϕ0 ¼ 1. However,
when g0ðN − 1Þ < −π2, it becomes energetically favorable
to keep particles close to each other and a nonuniform
solution becomes the ground state [30]. In the case of
periodic boundary conditions we consider here, ϕ0 is given
by the Jacobi elliptic function which tend to the well-known
bright soliton shape ϕ0 ∝ 1= cosh½g0ðN − 1Þðx − xc:m:Þ=2�
for g0N → −∞. The center of mass (c.m.) coordinate xc:m: is
a parameter. Its value can be chosen arbitrarily which
indicates that the mean field approach predicts breaking
of space translation symmetry contrary to the exact many-
body description where the eigenstates must be transla-
tionally invariant. Note that the Gross-Pitaevskii equation
does not depend on g0 and N separately but on the product
g0ðN − 1Þ. In the following we consider the limit where
N → ∞, g0 → 0 but g0ðN − 1Þ ¼ constant. In that limit, the
mean field predictions remain unchanged.

Now, let us return to the α ≠ 0 case. If we switch to the
c.m. coordinate frame, the Hamiltonian Eq. (1) becomes

H ¼ ðP − NαÞ2
2N

þ ~Hð~xi; ~piÞ; ð3Þ

where P is the center of mass momentum and ~Hð~xi; ~piÞ is
the Hamiltonian expressed in relative degrees of freedom.
Eigenstates of the system are determined by an independent
choice of the c.m. momentum (which is quantized,
Pj ¼ 2πj with integer j) and the relative degrees of
freedom quantum numbers. The ground state corresponds
to the minimal value of the first term in the right-hand side
of Eq. (3), i.e., to

∂H
∂Pj

¼ 2π
j
N
− α ≈ 0; ð4Þ

which can be chosen to be exactly zero in the limit of
N → ∞. It implies that there is no c.m. motion in the
ground state for a large particle number. Thus, even if a
spontaneous localization of the c.m. took place, we would
not observe the spontaneous breaking of the time trans-
lation symmetry because the localized c.m. would not
move. This constitutes a simple argument for why
Wilczek’s idea in its original version does not work.
However, there is the c.m. probability current for, e.g.,
PN ¼ 2πN even for large N if α is chosen so that

∂H
∂PN

¼ 2π − α ≠ 0: ð5Þ

The eigenstate corresponding to PN is not the ground state
because one can always choose such Pj that leads to a
lower energy of the c.m. degree of freedom. If, however, the
excited eigenstate with PN can be experimentally prepared,
then analysis of the possibility of spontaneous time trans-
lation symmetry breaking for this state is not the theoretical
issue only. One can imagine an experiment where the
system is initially prepared in the ground state for α ¼ 2π
which corresponds to PN . Next, α is switched to zero, that
makes the initial state with PN an excited eigenstate of the
new Hamiltonian with the c.m. probability current equal to
2π, cf. Eq. (5). In the following we assume α ¼ 0 and that
the initial state jψ0i corresponds to the lowest energy
eigenstate in the subspace with the total momentum PN and
investigate if measurement of the particles’ positions breaks
the continuous time translation symmetry and pushes the
system to periodic motion that can live infinitely long in the
limit of N → ∞ [4,9,13,17].
Eigenstates of the Hamiltonian Eq. (1) with α ¼ 0 can be

found with the help of the Bethe ansatz [31]. However,
within the Bethe formalism, simulations of the measure-
ment and subsequent time evolution can be in practice
performed for a few particles only [32,33]. Therefore, we
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have switched to numerical diagonalization of the
Hamiltonian Eq. (1) with α ¼ 0 in a truncated Hilbert
space. Eigenstates of the system can be written in the Fock
states basis,

Qlmax
l¼lmin

jnli, where nl denotes number of
bosons occupying the single particle mode with momentum
2πl. The values of lmin and lmax have to be adjusted so that
the lowest energy eigenstate jψ0i in the subspace corre-
sponding to the c.m. momentum PN is properly repro-
duced. For the value g0ðN − 1Þ ¼ −15 we consider here
and a central l ¼ 1 case, seven modes with l ¼ −2;…; 4
are sufficient to obtain converged results.
Probability density for the measurement of a single

particle is uniform if the system is prepared in the
eigenstate jψ0i. Assume that at t ¼ 0, such a measurement
results in x1 ¼ 0.5. Next, we are interested in the proba-
bility density ρ2ðx; tÞ for the position measurement of the
second particle at t > 0 which is related to the density-
density correlation function,

ρ2ðx; tÞ ∝ hψ0jψ̂†ðx; tÞψ̂ðx; tÞψ̂†ðx1; 0Þψ̂ðx1; 0Þjψ0i; ð6Þ

where ψ̂’s are the bosonic field operators. This kind of
measurement assumes that at the moment of detection, an
atom is removed from the system. Then, in full analogy to
the well-known theory of photon detection, the joint count-
ing rate for two atoms at two moments of time and at two
positions is proportional to the second order correlation
function of the bosonic field operators [34,35]. If ρ2ðx; tÞ is
nonhomogeneous in space and reveals periodic evolution
that lasts infinitely long in the limit whenN→∞ and g0 → 0
but g0ðN − 1Þ ¼ const., the time crystal behavior is realized.
In Fig. 1we show ρ2ðx; tÞ for different times. Observe a clear
breaking of time translational symmetry; i.e., the nonho-
mogeneous probability density for the measurement of the
second particle tends to move periodically along the ring
with the period T ¼ 1=2π. The time evolution also reveals
smearing of the distribution in time. This phenomenon may
be observed monitoring the contrast defined as CðtÞ ¼
½maxðρ2Þ −minðρ2Þ�=½maxðρ2Þ þminðρ2Þ� (over the ring,
for a fixed t) and represented in Fig. 2(a). The lifetime tc of

the structure created is defined as a point at which
CðtcÞ ¼ 0.5. Numerical simulations show that tc increases
linearly with the number of particles N as presented in
Fig. 2(b). Thus, in the limit N → ∞, the symmetry broken
state lives forever. For a given number of particles and for a
sufficiently long time evolution, the distribution undergoes
rephasing resembling quantum revivals, see Fig. 2(a).
It is possible to estimate analytically the time, tD, needed

for a noticeable deformation of the symmetry broken
state if we assume that initially we have measured not
only one particle but some fraction ϵ of all particles. Such a
measurement drives the system of remaining particles into a
Bose-Einstein condensate [35–37] the quantum state of
which can be approximated by a product state ψ ≈Q

N−ϵN
i¼1 ϕðxiÞ (compare the inset of Fig. 3 where the

purification of the condensate due to measurement is
presented). ϕðxÞ is the largest eigenvalue eigenstate of
the reduced single particle density matrix, i.e., the so-called
condensate wave function. It is localized around a certain
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FIG. 1. Time evolution of the density-density correlation function Eq. (6), i.e., the probability density for the measurement of the
second particle provided the first particle has been measured at t ¼ 0 at position x ¼ 0.5. The measurement breaks the continuous
translation symmetry making the probability density nonuniform. During a subsequent evolution, as expressed in the different panels,
the density moves along a ring with the period T ¼ 1=2π but also spreads with the characteristic time increasing with the particle number
N. All results are obtained for g0ðN − 1Þ ¼ −15.
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FIG. 2. (a) The contrast of ρ2ðx; tÞ as a function of time for
different particle numbers, i.e., for N∈f20;25;30;35;40;45;50g
from left to right. The lifetime tc plotted in (b) corresponds to the
point where the contrast decreases to C ¼ 0.5. All results are
obtained for g0ðN − 1Þ ¼ −15.
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position q on the ring [37]. The central limit theorem tells
us that the probability density for the c.m. coordinate is
jχðxc:m:Þj2 ∝ e−Nð1−ϵÞðxc:m:−qÞ2=σ2 where σ2 is the mean field
variance of the localized distribution jϕðxÞj2. Taking
χðxc:m:Þ as an initial wave function of the c.m. degree of
freedom we obtain that its free evolution results in the
spreading of the Gaussian wave packet, a standard textbook
problem. The time when the width of the c.m. distribution
becomes significantly wider than the initial width increases
with the number of particles as N1=2.
A direct numerical integration of the exact many-body

state confirms our analytical estimates. We first perform the
measurement of 20% of particles (i.e., the measured
fraction ϵ ¼ 0.2) then time evolve the resulting many body
state and look for the time tD when the standard deviation
of the c.m. distribution is equal to σ=2, i.e., half of the width
of the Gross-Pitaevskii solution. We have chosen σ=2
because it is large enough in order to observe deformation
of the symmetry broken state and smaller than the length of
the ring to avoid the influence of the periodic boundary
conditions. For a sufficiently large number of particles, tD
closely follows the central limit theorem prediction—
compare the main panel of Fig. 3. The remaining (small)
difference can be attributed to higher order correlations
present in the exact many-body state and absent in the
initial mean field state [38].
Let us consider the possible experimental verification of

the results presented. We suggest that the spontaneous
breaking of continuous time translation symmetry can be
observed in ultracold atomic gases. A tight toroidal atomic

trap can mimic a one-dimensional ring. The magnetic flux α
can be realized using methods already known for the
creation of artificial gauge potentials for atoms (see
Ref. [39] for a recent review), e.g., by inducing rotation
of a thermal cloud during the evaporative cooling. In the
latter case, the system dissipates to the lowest energy state in
the rotating frame and the Coriolis force mimics a magnetic
field. The coupling constant g0 can be controlled by means
of a Feshbach resonance that allows one to the change
s-wave scattering length of atoms [40]. An observation of
the spontaneous rotation of a nonuniform atomic density,
when the magnetic flux is turned off, will contrast with the
same experiment but performed for g0ðN − 1Þ > −π2. In the
latter case, the corresponding eigenstate of the system iswell
approximated by a product state of the uniform Gross-
Pitaevskii solution ϕ0 ¼ 1 with no position-density signa-
tures. Let us note that we consider neutral bosons in our
proposition. Thus the rotating nonuniform atomic density
will not radiate and decay as suggested in Refs. [5,14,24].
To summarize, we have analyzed the spontaneous break-

ing of a continuous time translation symmetry to the discrete
symmetry in the time crystal model introduced by Wilczek.
If the system is prepared in the ground state, spontaneous
rotation of a nonuniform density cannot be observed for a
large number of particles [5,6]. However, if we start with an
excited eigenstate, although the initial single particle den-
sity is uniform and does not display any motion, measure-
ment of the position of a single particle reveals a rotation of
the remaining particle cloud. The spontaneous rotation that
is modeled in the present publication can be observed in
ultracold atomic gases that allow experimentalists to pre-
pare, control, and detect not only many-body ground states
but also excited states. Realization of such an experiment
will complete an observation of the spontaneous breaking of
the continuous time translation symmetry, a major break-
through as compared with the spontaneous breaking of a
discrete time translation symmetry already observed in a
laboratory in a periodically driven chain of trapped ions [21]
or for a driven diamond [22].
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