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We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to
the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover
from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking
the particle-loss rate to the total atom numberN. In the degenerate and thermal regimes, the per-particle loss
rate is ∝ N2=3 and N26=9, respectively. The crossover occurs at a universal kinetic energy per particle and at
a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the
magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out
the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas
density, and reach a steady state while the gas is still degenerate.
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Strong interactions and correlations are at the heart of the
most interesting many-body quantum phenomena. The
possibility to control the interaction strength via Feshbach
resonances [1] makes ultracold atomic gases an excellent
setting for studies of strongly correlated behavior. On
resonance, the s-wave scattering length a, which character-
izes two-body contact interactions, diverges. In this so-
called unitary regime, the interactions are as strong as
allowed by quantum mechanics, and the physics cannot
explicitly depend on a, leading to the possibility of new
types of universal behavior [2–6].
Of particular interest are the interaction-dominated

degenerate unitary gases. Within the “universality hypoth-
esis,” they have only one relevant length scale—the average
interparticle spacing, given by the density n, which also sets
the natural energy and time scales [2]:

En ¼
ℏ2

2m
ð6π2nÞ2=3 and tn ¼ ℏ=En; ð1Þ

where m is the atom mass. These “Fermi energy” and
“Fermi time” scales are applicable to both Fermi and Bose
gases. In Bose gases, however, the universality can be
broken by Efimov physics [7–18]. The Feshbach dimer
molecular state, responsible for the resonance, is of size a
and becomes unbound as a → ∞, but the infinite series of
Efimov trimer states, each of a size 22.7 times larger than
the previous one, can introduce new length scales into the
problem.
While unitary Fermi gases have been extensively

explored [3–5], the experimental [15,16,19–22] and theo-
retical [23–36] studies of unitary Bose gases are only
recently emerging. An experimental challenge is that they
exhibit rapid three-body loss and heating, which also raises
fundamental questions about the extent to which they have

well-defined equilibrium properties [21], but the loss
dynamics also offer a valuable probe of the unitary
behavior [16,19–22]. While coherent three-body correla-
tions [15] and Efimov trimers [16] have been observed, the
decay dynamics [16,19–22] have been consistent with
universal scalings (see also [37]). All experiments so far
were performed with harmonically trapped gases, and their
interpretation relies on knowledge of the inhomogeneous
density profiles. For a degenerate gas, the density profile is
known prior to a quench to unitarity, and hence right after
it, but the subsequent evolution is complicated by strong
interactions and inhomogeneous losses and heating.
In this Letter, we study the dynamics of a homogeneous,

initially degenerate Bose gas quenched to unitarity. In our
gas, produced in an optical box trap [39], En and tn are
global variables simply set by the total atom number N
[40]. We can thus quantitatively study the full evolution of a
cloud as it decays and heats. In both degenerate and thermal
regimes, we observe (different) universal atom-loss scaling
laws in agreement with theoretical predictions, and we
characterize the universal features of the crossover between
the two regimes. By slowly ramping the magnetic field
away from the resonance and creating an atom-molecule
mixture, we also study the dynamics of correlations in the
unitary gas. These correlations show tn0 (where n0 is the
initial density) as the only relevant time scale and indicate
that the system reaches a strongly correlated quasiequili-
brium state while it is still degenerate.
Our clouds are produced in the lowest hyperfine state of

39K, which has a background scattering length of −29a0
(where a0 is the Bohr radius) and a 52-G-wide Feshbach
resonance centered at B0 ¼ 402.70ð3Þ G [15,41]. The
atoms are confined in a cylindrical box trap of radius
15ð1Þ μm and length 50ð2Þ μm [39,42], and we vary the
initial atom number N0 in the range ð48–214Þ × 103. This
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corresponds to tn0 values of a few tens of microseconds,
and the range of fields near B0 where n0a3 > 1 is ΔB ∼
0.1 G [43].
We start with a weakly interacting quasipure Bose-

Einstein condensate (BEC) more than 10ΔB away from
resonance, where n0a3 < 10−3. As outlined in Fig. 1(a), we
then rapidly (within 2 μs) quench the magnetic field to B0

[44], wait for a time thold, and then ramp the field away from
unitarity. We finally image the atoms after 8–32 ms of time-
of-flight (TOF) expansion. The number of atoms that we
observe, Nobs, can reduce with thold for two reasons: (i) due
to losses at unitarity and (ii) because the ramp-out from
unitarity results in a mixture of atoms and (Feshbach and/or
Efimov) molecules [16], and our imaging detects only free
atoms. The molecular fraction after the ramp-out depends
on both the correlations in the unitary gas and the ramp-out
rate [16,45–47], R ¼ −dB=dt [48]. Independently of the
many-body state at unitarity, an infinitely rapid ramp-out
should essentially project the resonantly interacting cloud
onto free-atom states, so that Nobs ¼ N.

To disentangle the two sources of the reduction of Nobs,
we vary the ramp-out rate, as illustrated in Fig. 1(b). Here
the open symbols show Nobs versus 1=R forN0 ¼ 98 × 103

and a fixed thold ¼ 80 μs. The data are fitted well by an
exponential, characteristic of a Landau-Zener process
[45,47]. Extrapolating to 1=R ¼ 0, we assess that, with
our technically limited fastest ramp-out, 1=R ¼ 0.3 μs=G,
we get Nobs ¼ N to within < 10%; we verified this for our
full range of N0 and at several thold. For slower ramp-outs,
Nobs is reduced by up to 40% (for this N0 and thold). To
verify that this reduction occurs due to the creation of an
atom-molecule mixture, after the first trip to the resonance
(with a slow ramp-out) we apply a brief (8 μs) second
magnetic-field pulse to B0 to break up the molecules and
find that most of the missing atoms reappear—see the solid
symbols in Fig. 1(b) [49].
In Fig. 1(c), we show, for N0 ¼ 98 × 103, the evolution

of Nobs with thold for both our fastest ramp-out and a much
slower one, 1=R ¼ 6 μs=G. Note that there is very little
difference between the two curves for very short thold,
showing that it takes time for the system to develop the
correlations that lead to the creation of an atom-molecule
mixture.
From here on, we separately study the atom-loss and

correlation dynamics. We first focus on the atom loss and
assume that for our largest R to a good approximation
Nobs ¼ N. From the TOF images (see Fig. 2), we also
extract the kinetic energy per particle, E, which monoton-
ically grows with thold.
The per-particle loss rate is _N=N ¼ −L3hn2i, where L3

is the three-body loss coefficient. For a homogeneous gas,
we simply have hn2i ¼ n2 ¼ N2=V2 (where V is the
volume), and one can generally predict a scaling-law
behavior:

_N=N ¼ −const × Nγ: ð2Þ

Away from unitarity L3 ∝ a4 [51,52] and in a degenerate
unitary gas (assuming universal behavior), a is replaced by

(a)

(c)

(b)

FIG. 1. Measurement of atom-loss and correlation dynamics.
(a) A BEC is quenched to unitarity, and the cloud is held there for
a variable time thold and then ramped away from unitarity at a
variable rate R ¼ −dB=dt. An infinitely fast ramp-out (solid line)
would project the resonantly interacting cloud onto free-atom
states, while a finite-rate ramp-out (dashed line) creates a mixture
of atoms and molecules. (b) Open symbols: The observed atom
number versus 1=R, for N0 ¼ 98 × 103 and thold ¼ 80 μs. Solid
line: An exponential fit, which gives an exponential constant of
2.2ð3Þ μs=G. Solid symbols: Nobs if the molecules are dissociated
by a second magnetic-field pulse to resonance. (c) Evolution of
Nobs with thold for our fastest ramp-out (0.3 μs=G) and a much
slower one (6 μs=G). The fast ramp-out data show the on-
resonance atom loss, and the difference between the two curves
reveals the correlation dynamics in the unitary gas.

(a) (b)

FIG. 2. Growth of the kinetic energy, for N0 ¼ 214 × 103.
(a) Absorption images taken for various thold and after 12 ms
of TOF expansion at weak interactions. (b) Kinetic energy
per particle, E, versus thold. Note that the interaction energy
per particle after the ramp-out is < 20 nK. The solid line
shows the 2=13 power law predicted for a thermal gas at
long thold, where E ∝ T.
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n−1=3 ∝ N−1=3, so γ ¼ 2=3; that is, the instantaneous tn is
the only time scale, so at all times _N=N ∝ −1=tn. Such
scaling was recently seen in the initial loss rate in a
harmonically trapped 85Rb gas quenched to unitarity [16].
In a thermal unitary Bose gas, _N=N ∝ −hn2i=T2

[19,20,22], where T is the temperature, so in our homo-
geneous case _N=N ∝ −N2=T2. Here a is replaced by the
thermal wavelength λ ∝ 1=

ffiffiffiffi

T
p

, which is a statistical
measure of the inverse relative atomic momenta. We
now have two length scales, n−1=3 and λ, but their dynamics
are coupled and we can still predict a simple scaling law in
the form of Eq. (2). Heating occurs because atoms with
lower relative momenta have a higher unitarity-limited loss
rate and are preferentially lost from the system. Following
Ref. [19], for a homogeneous gas we get dT=T ¼
−ð4=9ÞdN=N, so T ∝ N−4=9, and we thus predict
γ ¼ 2þ 2 × 4=9 ¼ 26=9. Note that this theory also implies
that at long times T ∝ t2=13hold , in agreement with our
measurements shown in Fig. 2(b).
To experimentally study the instantaneous loss rate, we

numerically differentiate our atom-loss curves, NðtholdÞ. In
Fig. 3, we plot _N versus N for N0 ¼ 214 × 103. We clearly
observe both the degenerate-gas γ ¼ 2=3 behavior, for
large N (short thold), and the thermal-gas γ ¼ 26=9 behav-
ior, for small N (long thold).
In Fig. 4, we explore the universal features of the

crossover between the two distinct unitary-gas regimes.
In Fig. 4(a), we plot _N versus N for different N0 and see
that all the degenerate-gas data (large N=N0) follow the
same γ ¼ 2=3 law (solid line). Writing _N=N ¼ −A=tn, we
get A ¼ 0.28ð3Þ; we assess that due to the < 10% differ-
ence between Nobs and the true N we might overestimate A
by up to 0.04. For comparison, from the 85Rb data [16] we
extract a slightly lower A ≈ 0.18, which is consistent [26]

with the difference in the Efimov width parameters, η� ≈
0.09 for 39K [20] and ≈0.06 for 85Rb [12].
For all N0, the small N=N0 data agree with γ ¼ 26=9

[dashed lines in Fig. 4(a)]. Within errors, the crossover to
this regime always occurs at the same fraction of the initial
population and the same thold expressed in units of tn0 ; see
Fig. 4(b). We get Nc ¼ 0.43ð4ÞN0 and tc ¼ 4.0ð4Þtn0 [53].
In Fig. 4(c), we relate the change in γ to the growth of the

dimensionless E=En. We define the dimensionless per-
particle loss rate

Γ ¼ −tn _N=N; ð3Þ
such that in a degenerate gas Γ ¼ A and in a thermal gas
Γ ∝ N4=3=T2 ∝ ðEn=EÞ2 (using _N=N ∝ −N2=T2 and
E ∝ T). Plotting Γ versus E=En, the data for different
N0 collapse onto a single universal curve, with the cross-
over at Ec ¼ 1.7ð2ÞEn. For an ideal Bose gas in equilib-
rium, this energy would be quite high, corresponding to
T ≈ 3Tc, where Tc is the BEC critical temperature.
However, in a unitary gas, we expect E=En to be of the
order of unity even at T ¼ 0 [23,27,28,31]. An important
challenge for future work is to disentangle the contributions
to the initial growth of E=En (at thold < tc) due to heating
and due to the development of the interaction-induced
correlations that coherently broaden the momentum dis-
tribution [21,23,32,35,36].

FIG. 3. Atom-loss scaling laws, for N0 ¼ 214 × 103. We
observe both the γ ¼ 2=3 and the γ ¼ 26=9 law, predicted
(respectively) for a degenerate and a thermal unitary Bose gas.
The crossover between the two regimes occurs at a well-defined
atom number.

(a)

(c)(b)

FIG. 4. Universal crossover from a degenerate to a thermal
unitary gas. (a) The same 2=3 law, _N=N ¼ −0.28=tn (solid
line), describes degenerate gases with different N0. The
dashed lines show the γ ¼ 26=9 scaling. (b) For all N0

the crossover occurs at almost the same N=N0 and thold=tn0 ;
averaging gives Nc ¼ 0.43ð4ÞN0 and tc ¼ 4.0ð4Þtn0 . (c) Plot-
ting the dimensionless loss-rate Γ, defined in Eq. (3), versus
E=En yields a single universal curve, with the crossover at
Ec ¼ 1.7ð2ÞEn. The solid line is Γ ¼ 0.28, and the dashed
one shows the expected Γ ∝ ðEn=EÞ2.
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We now turn to the dynamics of correlations at unitarity.
Here we denote by ΔN the reduction in Nobs due to a
slow ramp-out (still setting Nobs ¼ N for our largest R). In
Fig. 5(a), we show ΔN versus thold for different N0 and a
same slow ramp-out. In Fig. 5(b), we plot the fractional
ΔN=N versus the dimensionless thold=tn0 and also show a
measurement with a different R. Plotted this way, apart
from their heights all the curves look essentially the same,
showing that the correlation dynamics are universally
determined by the initial density.
Qualitatively, the nonmonotonic behavior of ΔN=N

arises due to the competition of two effects. It takes time
for the correlations to develop after the interaction quench,
but, on the other hand, at very long times the system is
again uncorrelated, because it heats up and the phase space
density drops significantly (see also [47,54]).
In the inset in Fig. 5(b), we highlight (on a linear time

scale) that ΔN=N becomes essentially flat well before tc,
meaning that at least in some sense the system reaches a
quasiequilibrium while it is still degenerate. The same
conclusion was drawn in Ref. [21] based on momentum-
distribution dynamics in a harmonically trapped gas; the

short-range correlations reflected in the molecule formation
here go hand in hand with the high-momentum tails
observed in Ref. [21], and in both cases these correlations
are seen to grow and saturate on a time scale of about 1tn0 .
Importantly, in our homogeneous system this implies a
global (quasi)equilibrium.
Quantitatively understanding the apparently universal

shape of the ΔN=N curves, and their heights, is an
interesting and challenging problem for future work.
Based on the recent observation with 85Rb [16], our
atom-molecule mixture likely contains trimers in the first
excited Efimov state, which could lead to a nontrivial
dependence of the peak value of ΔN=N on the initial
density. This state has an on-resonance size of the order of
1 μm [9,10,14,55] and could set a scale that separates
“small” and “large” densities.
In conclusion, we have performed a comprehensive

study of the particle-loss, energy, and correlation dynamics
in an initially degenerate homogeneous Bose gas quenched
to unitarity. We have demonstrated the anticipated scaling
laws characterizing both a degenerate and a nondegenerate
gas, observed universal features of both the dynamical
crossover to the thermal regime and of the correlation
dynamics, and found that the cloud attains a quasiequili-
brium state while it is still degenerate. In the future, it
would be interesting to also study the composition of the
molecular cloud created by the magnetic-field sweep [16]
and distinguish the two- and three-body correlation dynam-
ics at unitarity.
Data supporting this publication are available for down-

load at [56].
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