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A long-standing prediction of quantum electrodynamics, yet to be experimentally observed, is the
interaction between real photons in vacuum. As a consequence of this interaction, the vacuum is expected to
become birefringent and dichroic if a strong laser field polarizes its virtual particle—antiparticle dipoles.
Here, we derive how a generally polarized probe photon beam is influenced by both vacuum birefringence
and dichroism in a strong linearly polarized plane-wave laser field. Furthermore, we consider an
experimental scheme to measure these effects in the nonperturbative high-energy regime, where the
Euler-Heisenberg approximation breaks down. By employing circularly polarized high-energy probe
photons, as opposed to the conventionally considered linearly polarized ones, the feasibility of
quantitatively confirming the prediction of nonlinear QED for vacuum birefringence at the 5S¢ confidence
level on the time scale of a few days is demonstrated for upcoming 10 PW laser systems. Finally, dichroism
and anomalous dispersion in vacuum are shown to be accessible at these facilities.
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In the realm of classical electrodynamics, the electro-
magnetic field experiences no self-interaction in vacuum
[1]. According to quantum electrodynamics (QED), how-
ever, a finite photon-photon coupling is induced by the
presence of virtual charged particles in the vacuum [2]. For
low-frequency electromagnetic fields F*¥, such vacuum
polarization effects are described by the Euler-Heisenberg
Lagrangian density [3-6]. Below the QED critical field
E, = m?/|e] # 1.3 x 10" V/m, low-frequency vacuum
polarization effects are suppressed [7—12] and the density
is given by
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where F = F, F* /4 and G = F W /4 are the electro-
magnetic field invariants [13].

The Euler-Heisenberg Lagrangian predicts that the
vacuum resembles a birefringent medium [14-17]. The
smallness of the QED prediction for the light-by-light
scattering cross section in the low-energy regime opens up
the possibility to search for physics beyond the standard
model, e.g., axionlike or minicharged particles and para-
photons, by measuring optical vacuum polarization effects
[18-22], see also [23,24].

Recent astronomical observations hint at the existence of
vacuum birefringence [25] (see also the remarks in
[26,27]). However, a direct laboratory-based verification
of this fundamental property of the vacuum is still missing.
Laboratory experiments like BFRT [28], BMV [29],
PVLAS [30], and Q&A [31] have so far employed
magnetic fields to polarize the vacuum and optical photons
to probe it, though without reaching the required sensitivity.

The strongest electromagnetic fields of macroscopic
extent are nowadays produced by lasers. However, even
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the intensities I~ 10>> W/cm? envisaged for future
10 PW-class optical lasers [32,33] are still well below the
critical intensity I, = E% ~ 4.6 x 10?° W/cm?. Therefore,
the leading-order correction given in Eq. (1) is sufficient to
describe low-frequency vacuum polarization effects.
Recently, various setups have been considered to measure
them [34-52], but all suggested experiments will remain
challenging in the foreseeable future.

As the light-by-light scattering cross section attains its
maximum at the pair-production threshold [2], it is natural
to consider high-energy photons to probe vacuum birefrin-
gence [53-58]. A photon four-momentum ¢* (¢° = w,
q2 =0) allows us to construct a third invariant, the
quantum nonlinearity parameter (see [2], § 101)
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[for a plane-wave background field with amplitude f** and
phase-dependent pulse shape y/(¢), i.e., F** = ffy/'(¢),
details are given below; the last relation in Eq. (2) assumes
a head-on collision]. As gamma photons with energies
® Z 1 GeV are obtainable from Compton backscattering
[2,59-62], the regime y ~ 1 is attainable in future laser-
based vacuum birefringence experiments.

In the nonperturbative regime y = 1, the Euler-
Heisenberg approximation is no longer applicable, as it
neglects the contribution of the probe photon momentum,
which flows in the electron-positron loop [see Fig. 1(a)].
Instead, the polarization operator in the background field
must be employed [see Fig. 1(b)]. For low-energy photons,
both objects in Fig. 1 are related by functional derivatives
[14]. The regime y = 1 is qualitatively different from the
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(a) Euler-Heisenberg Polarization operator

FIG. 1. The Euler-Heisenberg effective action is only valid for
approximately constant fields (denoted by a wiggly line with a
cross). The polarization operator must be considered if the
momentum of the probe photon (wiggly line) becomes influential
(r 2 1). Here, a solid double line denotes the exact electron
propagator inside a classical background field.

one where the Euler-Heisenberg approximation is valid, in
particular, due to the following two reasons: (1) electron-
positron photoproduction becomes sizable, and thus, the
vacuum acquires dichroic properties; (2) the vacuum
exhibits anomalous dispersion [11,56,63-65].

In this Letter, we put forward an experimental scheme to
measure high-energy vacuum birefringence and dichroism
in the nontrivial regime y 2 1. It is based on Compton
backscattering to produce polarized gamma photons and
exploits pair production in matter to determine the polari-
zation state of the probe photon after it has interacted with a
linearly polarized strong laser pulse. By analyzing the
consecutive stages of this type of experiment, we show that
for vacuum birefringence, the required measurement time is
reduced by two orders of magnitude if a circularly
polarized probe photon beam is employed (hitherto, only
linearly polarized probe gamma photons have been con-
sidered for setups similar to ours [53-56,66]).

Assuming conservative experimental parameters, we
demonstrate that with this type of setup and the observables
we introduce [see Eq. (13)], the quantitative verification of
the strong-field QED prediction for vacuum birefringence
and dichroism is feasible with an average statistical
significance of 56 on the time scale of a few days at
upcoming 10 PW laser facilities.

In the following, we consider a linearly polarized
plane-wave laser pulse, described by the four-potential
A*(kx) = aw(kx). Here, x* is the position four-vector, k¥
is a characteristic laser photon four-momentum (kX = w,,
k*> = 0), a* characterizes the amplitude of the field (a*> < 0,
ka =0, f* = k*a* — k*a"), and w(kx) defines its pulse
w(kx)|, |y’ (kx)| < 1; a prime denotes the derivative
of a function with respect to its argument).

A gauge- and Lorentz-invariant measure of the laser field
strength is the classical intensity parameter [11]

Here, we focus on high-intensity optical lasers

(I 210" W/cm?, w; ~ 1 eV), i.e., the regime &> 1.
Inside a plane-wave background field, an incoming

external photon line (see Fig. 2) in a Feynman diagram
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FIG. 2. A background field changes the photon dispersion
relation via radiative corrections induced by virtual particles [2].
Here, we neglect higher-order radiative corrections to the
electron-positron loop as ay®3 <« 1 [11].

corresponds (up to normalization) to the function @%(x),
which is a solution of the Dyson equation [2,67] with
initial condition @/ (x ) - d)(o) (x) = eOkeiax as kx —
—o0 (e = —1, ge® = 0). After applying the local
constant field appr0x1mat10n (valid if £ > 1) and following
[67], we find that to leading order, @ (x) is given by (see

also [18,56,64,65])
= ik, (4)

i=12

@ (x) = e (kx)e e,

where

e (kx — —o0) = e = 3" VAL, (5)

i=12

and A = fq,/\/qf*q. N =—F"q,/\/af*q (gh; =
kA; =0, A;A; = —6;;; note that Aj is actually a pseudo
four-vector) [67-69]. The coefficients c;(kx) and cgo) are
connected via

ci(kx) = ¢\ exp [ihi (kx) — 4i(kx)), (6)
(pi(¢.x)]

{@(kx)] 1l [k d¢[Re

2 (kx) 2kq J-o [ Im[p;(¢.x)]
[we refer to ¢; = ¢;(kx — o0) as phase shifts and to 4; =
A;(kx — oo0) as decay parameters] with

[ib] a1, [ D) 10

where

|

(8)

w=4/(1 = 02), u = [w/y (k). y(kx)
f(u) = #[Gi(u) + iAi(u)] [11,70].

In order to extend the above result from a single photon
to a photon beam (which is, in general, not in a pure
polarization state), we introduce the following density
tensors, which describe the initial (0(©#**) and the final
(0") polarization state of the beam [2,71,72]
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(a) Experimental setup. Polarized highly energetic gamma photons (produced via Compton backscattering) propagate through

a strong laser field, which induces vacuum birefringence and dichroism. Afterward, the gamma photons are converted into electron-
positron pairs. From their azimuthal distribution, the polarization state is deduced. (b) Regions of the transverse plane (gray), which are
used to define the observables Ry (left) and R, (right) [see Eq. (13)].

Here, w, represents the probability to find a photon with

polarization four-vector 620)” (€4) in the initial (final) beam.
Using the identity matrix I and the Pauli matrices ¢ =

(61,05,03) [2], we expand the initial (pgj?)) and the final
(p;j) polarization density matrices as [2,71,72]

1
PO =—(sVT4+806),  p= 5(Sol +86)  (10)

[Tr(p?) = S(()O), Tr(p) = So; Sp < S(()()), in general, as the
photons can decay in the strong background field].
The real Stokes parameters S(©) = {S(()O),S(O)} SO =

(51", 55", 557)1 and S = {$5.8} [S = (1.5, 85)] com-
pletely characterize the initial (final) polarization state of
the beam [72,73]. Therefore, the following relations
describe any possible vacuum birefringence and/or dichro-
ism experiment [see Eqgs. (4), (6), (9), and (10)]

(SO > _ <cosh 51 sinh 62 ) sy
S3 sinh62  coshé2/ \ g0 )
(S‘> _ o ~lnth) <C°S‘3¢ _Sin5¢> S (11)

S, sinégp  cosS¢p Sgo)

Here, 6¢p = ¢p, — ¢, is related to vacuum birefringence and
oA = A, — A1 to vacuum dichroism.

In the following, we discuss possible high-energy vacuum
birefringence and/or dichroism experiments [see Fig. 3(a)]
at the Apollon facility (F1/F2 laser) [74], ELI-NP (two
10 PW lasers) [75,76], and ELI-Beamlines (ELI-BL; L3/L4
laser) [77]. At each facility, a 10 PW laser is employed to
polarize the vacuum, and the second laser is utilized to
produce electron bunches via laser wakefield acceleration
[78,79]. We also consider a possible experiment (denoted as
LINAC-L) at a conventional electron accelerator, e.g., the
European XFEL [80], FACET-1I [81], or SACLA [82],
combined with a high-repetition (10 Hz) 1 PW laser. The
parameters of the considered facilities are summarized in the
Supplemental Material [83].

We assume that N, = 10® monoenergetic few-GeV
electrons are used in one experimental cycle for the

generation of probe gamma photons via Compton back-
scattering.

For a rectangular pulse with N cycles {y'(kx) =
sin(kx) if kx € [-Nz, Nz] andy'(kx) = O otherwise}, the
relative phase shift d¢p depends only on y and &N it is
plotted in Fig. 4. We conclude that |5¢| < 0.1 for upcoming
laser systems in the regime 0.1 <y < 1, where a clean
vacuum birefringence measurement is feasible as pair
production is exponentially suppressed. Notably, the quan-
tity o¢ decreases with the increase of the probe photon
energy for y 2 2.5, which characterizes the anomalous
dispersion of the vacuum in this regime [11,56,63-65].

For obtaining better estimates as those given in Fig. 4, in
the following, we employ a Gaussian pulse envelope
W' (kx) = exp|—(kx/Ag)?] sin(kx), where A¢ is related
to the duration of the pulse At (FWHM of the intensity)
via A¢ = w; At/+/2In2. This pulse collides with N, =
N 61 (Ips/ Wy ) Aty gamma photons, where oy is the cross
section of Compton scattering [2], and the index “bs”
indicates the parameters characterizing the backscattering
process. To obtain a high degree of polarization, we
consider only photons which are scattered in the region
0 € (0, Oax < 1), where 0 denotes the polar angle (6 = 0
corresponds to perfect backscattering) [2,59-62,83].

3000 ] 1.3
2500 \ELI—Beamliknes L4 1.0
o
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S 2

1500 |- ELI-NP 0.5
1000 \Apollon Fk 3

500 L \' L \" o / 0.0

1072 107! 10° 10!

X

FIG. 4. Plot of §¢ as a function of y and N for a rectangular
pulse profile. For each of the three laser facilities, gamma photons
with energy w = 0.1 GeV (left point), v = 0.5 GeV (central
point), and @ = 1 GeV (right point) are indicated. Note that
|6¢p| Z 0.1 is also achievable by employing a longer PW laser
pulse (e.g., National Ignition Facility with At = 3 ns [32]) and
probe photons with @ 2 0.1 GeV.
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Below, we employ Af,, = Af, o, = 1.55 eV, and [, =
4.3 x 10'® W/cm? [considering linear Compton scattering
is sufficient as &, = 0.1 for this laser; see Eq. (3)].

One of the main experimental challenges is to analyze
the final polarization state of the gamma photons. Here, we
consider pair production in a screened Coulomb field of
charge Zle| [91-94]. The spin-summed pair production
cross section is given by

do .
doy, = > {Soo0 + [S; sin(2¢) + S3 cos(29)]or},  (12)

where ¢ denotes the azimuth angle of the electron
momentum in the transverse plane. For oy, o;, we use
expressions exact in Za and valid for ultrarelativistic
particles [83,93,94]. In the following, we assume a head-
on collision [¢* = ®(1,0,0,1), k" =w;(1,0,0,-1),
A{=(0,1,0,0), A5 =(0,0,1,0)], and tungsten (Z = 74)
as conversion material.

As the pair-production cross section is only sensitive to
linear polarization [S; and S3, see Eq. (12)], we conclude
from Eq. (11) that we need to utilize circularly polarized
probe photons (e.g., S = {1,0,—1,0}) in order to obtain
probabilities which depend on 8¢ [rather than (6¢)%] if
|6¢p| < 1 (see also [57,58]). Therefore, inverting the stan-
dard scheme by using circularly instead of linearly polarized
probe photons is highly beneficial in the regime |5¢| < 0.1.

From Eq. (11), we conclude that Sy is sensitive to
vacuum birefringence (6¢), whereas S; depends on vacuum
dichroism (64). To disentangle both effects, we introduce
the following asymmetries:

R (Nyzsa+ Nsza) = (Naga + Noga)
T
B (Nyzsa + Nsg/a) + (N3zja + Nogys)
R (No+ Nyz) = (Ngj2 + Nagpa) (13)
b (No+Nz) + (Nzjp + Nagpa)

where Ny denotes the number of pairs detected in the
azimuth angle range ¢ € (fy — 3, fo + f) of the transverse
plane, with # being specified below [see Fig. 3(b)]. The
expectation values of R and R, are given by [see Eq. (12)]

sin(2f3) 018
2 oo So

sin(2f) 0, S5
2 69Sy

(Rp) = (Rp) = (14)

In order to detect vacuum birefringence (dichroism) at
the no confidence level on average, we require that the
expectation value (Rp) ((Rp)) differs from zero by n
standard deviations. Therefore, we obtain the following
expressions for the number of required incoming gamma
photons (see Supplemental Material [83]):

B an? D n?

N = apsoke? N T anpselryr ()

TABLE 1. Duration of the experiment 7z at different facilities
(x =0.25). Sy and S;, (Rg), and N follow from Eq. (11),
Eq. (14) and Eq. (15), respectively (S© = {1,0,—1,0}; 5¢
confidence level, i.e., n =5). Note that the pair production
probability in the strong laser field is much smaller than the
conversion efficiency in the detector [(1 — Sy) < 5 = 1072].

l - SO Sl <RB> Nf T
Apollon  1.9x 1075 0.06 34x1072 3.0x10% 45d
ELI-NP 31x107° 009 56x103 1.1x10% 10d
ELI-BL 63x107° 018 1.1x10%2 26x107 11h
LINAC-L 38x10° 0.0l 68x10* 74x10° 2d

[by minimizing N7 (N2), we find the optimal angle f =
Popt & 0.58 = 33° for both observables]. Here, n = n lo,
denotes the photon to pair conversion efficiency (n, and /
are the number density and the thickness of the conversion
material, respectively). The thickness of a conversion foil
should be <1 milliradiation length (mRL), otherwise
multiple Coulomb scattering affects the measured angle
[91,93]. Supposing that several conversion foils alternating
with silicon detectors are cascaded [95-97], we assume
here n = 1072 (i.e., an effective thickness of ~10 mRL).

To obtain a clean vacuum birefringence experiment
without real electron-positron pair production, we consider
the case y = 0.25. The results for the four facilities under
consideration are summarized in Table I. As expected from
Fig. 4, ELI-Beamlines is the most suitable facility for
carrying out the measurement in this regime (the expected
measurement time is less than one day).

As the number of required gamma photons N. f scales as
(Rg)~? [see Eq. (15)], the use of circularly polarized probe
photons instead of linearly polarized ones reduces the
measurement time by a factor ~#100 (6¢ = 0.1, see Fig. 4).

100
107! :
o
1072 L
1073 | | | | |
0 1 2 3 4 5
X
FIG. 5. Final Stokes parameters [see Eq. (11)] for gamma

photons propagating through an ELI-NP 10 PW laser pulse
(5© = {1,0,—1,0}). The strongest effect is obtained around

x = 1 (note that pair production becomes sizable for y = 1). As

we consider the tunneling regime 1/¢ < 1, cusplike structures—
characteristic for multiphoton pair production [18,65]—are
absent.
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Finally, we consider the case y = 2.5 (attainable, e.g., at
ELI-NP by utilizing 8.4 GeV electrons for backscattering;
Omax =7.6x107%, 6, = 0.13572, @ = 1.4 GeV, 0,/0) =
0.077; r, = a/m = 2.818 x 10~13 cm is the classical elec-
tron radius). In this regime, vacuum dichroism and anoma-
lous dispersion come into play and the Euler-Heisenberg
approximation breaks down completely (see Fig. 4),
whereas the production of particles, heavier than electrons
and positrons, and QCD corrections are still suppressed
[98]. As the produced pairs radiate gamma photons, a
discrimination of primary from secondary photons is
necessary, e.g., via determination of the photon energy.
For S© = {1,0,—1,0}, we obtain that S = {0.18,0.11,
—0.12,0.09} at ELI-NP (see Fig. 5). Correspondingly,
(Rg) =3.6x 1072 and (Rp) =3.0x 1072, implying a
measurement time of 3-4 days [5c confidence level,
see Eq. (15)].
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