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We study the superfluid properties of a system of fully polarized dipolar bosons moving in the XY plane.
We focus on the general case where the polarization field forms an arbitrary angle α with respect to the Z
axis, while the system is still stable. We use the diffusion Monte Carlo and the path integral ground state
methods to evaluate the one-body density matrix and the superfluid fractions in the region of the phase
diagram where the system forms stripes. Despite its oscillatory behavior, the presence of a finite large-
distance asymptotic value in the s-wave component of the one-body density matrix indicates the existence
of a Bose condensate. The superfluid fraction along the stripes direction is always close to 1, while in the Y
direction decreases to a small value that is nevertheless different from zero. These two facts confirm that the
stripe phase of the dipolar Bose system is a clear candidate for an intrinsic supersolid without the presence
of defects as described by the Andreev-Lifshitz mechanism.
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Supersolid many-body systems appear in nature when
two continuous U(1) symmetries are broken. The first
one is associated with the translational invariance of the
crystalline structure, while the second one corresponds to
the appearance of a nontrivial global phase of the superfluid
state [1]. Supersolid phases were predicted to exist in
helium already in the late 1960s [2], though their exper-
imental observation has been elusive. In fact, the claims for
detection made at the beginning of this century have been
refuted, as the observed behavior is not caused by finite
nonconventional rotational inertia but rather to elastic
effects [3]. In this way, a neat observation of supersolidity
in 4He is still lacking. In fact, it is not clear yet whether a
pure, defect-free supersolid structure like the one that
would be expected in 4He really exists. Recently, the issue
of supersolidity has emerged again, but now in the field of
ultracold atoms. Two different experimental teams have
claimed that spatial local order and superfluidity have been
simultaneously observed in lattice setups [4] and in stripe
phases [5]. In this way, the definition of what a supersolid
really is seems to still be under discussion [6].
Superfluid properties of solidlike phases are also of

fundamental interest in quantum condensed matter. One
of these is the stripe phase, where the system presents spatial
order in one direction but not in the others. For instance,
stripe phases have been of major interest since 1990, when
nonhomogeneous metallic structures with broken spatial
symmetry were found to favor superconductivity [7,8]. More
recently, stripe phases have been observed in Bose-Einstein
condensates with synthetically created spin-orbit coupling
[5], where the momentum dependence of the interaction
induces spatial ordering along a single direction in some
regions of the phase diagram [9]. Stripe phases have also
been discussed in the context of quantum dipolar physics,
including very recent theoretical and experimental analysis

of metastable striped gases of 164Dy [10]. Because of the
anisotropic character of the dipolar interaction, in some
regions of the phase diagram dipoles arrange in stripes, both
in Fermi [11,12] and Bose [13,14] systems. In some cases
the presence of this phase has been reported to exist even in
the isotropic limit [15]. Though the presence of stripe phases
in dipolar systems is well established and has been recently
observed [16], it is not yet clear whether the system exhibits
superfluid properties (thus forming supersolid stripes) or not.
In a previous work we determined the phase diagram

[14] of the two-dimensional system of Bose dipoles at zero
temperature, tracing the transition lines between the solid,
gas and stripe phases. The formation and excitation
spectrum of the stripe phase, where the system acquires
crystal order in one direction while being fluid on the other,
was previously analyzed in Ref. [13]. In this Letter we
investigate the superfluid properties of the stripe phase as a
function of the density and polarization angle. Our results
show that dipolar stripes are a special form of supersolid,
and we quantify the superfluid density and condensate
fraction all along the superstripe phase.
In the following, we consider a system of N fully

polarized dipolar bosons of mass m moving on the XY
plane. All dipoles are considered to be aligned along a
fixed direction in space given by a polarization (electric or
magnetic) field, which is contained on the XZ plane and
forming and angle α with respect to the Z axis. The model
Hamiltonian describing the system becomes then

H ¼ −
ℏ2

2m

XN
j¼1

∇2
j þ

Cdd

4π

XN
i<j

�
1 − 3λ2cos2θij

r3ij

�
; ð1Þ

with λ ¼ sin α, and ðrij; θijÞ the polar coordinates associ-
ated to the position vector of particle j with respect to
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particle i. The constant Cdd is proportional to the square of
the (electric or magnetic) dipole moment of the compo-
nents, assumed all of them to be identical. In the following
we use dimensionless units obtained from the characteristic
dipolar length r0 ¼ mCdd=ð4πℏ2Þ.
We quantify the superfluid properties of the system

evaluating both the one-body density matrix and its asymp-
totic value (the condensate fraction), and the superfluid
density. In order to do that we employ stochastic methods.
We use two different quantum Monte Carlo techniques that
are known to provide exact values for the energy of the
system within residual statistical noise: the diffusion
Monte Carlo (DMC) [17,18] and the path integral
Monte Carlo (PIGS) [19,20] methods. The DMC simula-
tions have been performed using a second order propagator
[21], while a fourth order propagator has been employed in
the PIGS calculations [22]. In all cases, a variational model
of the ground state wave function ΨT is used. In the DMC
method, the guiding wave function is used for importance
sampling but the ground state estimation of any observable
commuting with the Hamiltonian is exact. In PIGS simu-
lations, ΨT acts as a boundary condition at the end points of
the open chains representing the set of particles. It is then
propagated in imaginary time to the center of the chains,
where expectation values are evaluated. In this way, any
contribution orthogonal to the exact ground state is wiped
out. Two different models have been used in this work. In the
DMC simulations, ΨT has been taken to be of the Jastrow
form, with a two-body correlation factor that results from the
zero-energy solution of the two-body problem associated to
Eq. (1) as derived in Ref. [23], matched with a long-range
phononic extension as discussed in the same reference. This
model must be modified when describing the stripe phase,
including a one-body term f1ðrÞ that allows for the
formation of the stripes along the Y direction

f1ðrÞ ¼ exp

�
ηs cos

�
2πnsy
Ly

��
; ð2Þ

with Ly the box side length along the Y direction, and ns the
number of stripes in the simulation box. Notice that these
two parameters are not independent, as one must guarantee
the simulation box is commensurated for a fixed number
of particles. In Eq. (2), ηs is a variational parameter that is
consistently found to be zero in the gas phase, and nonzero in
the stripe phase. For the PIGS simulations, we have adopted
a much simpler model based on the zero-energy solution of
the isotropic (α ¼ 0) problem, matched with a phononic tail
as in Ref. [14]. Despite its simplicity, we have found no
differences with the results obtained when using the same
model as in the DMC case.
Since we are analyzing superfluid properties, we have

performed several calculations spanning a wide range of
densities and polarization angles in the regions of the phase
diagram where the system is in stripe form. Notice that, in

the solid phase, the system arranges in a triangular lattice
that completely breaks the continuous translational sym-
metry [14], while in the stripe phase this symmetry is
broken only in one direction (the Y axis in our setup). For
the sake of comparison, we have also explored two addi-
tional points where the system remains either as a gas or as
a solid. The set of points explored in this work is shown in
the phase diagram, Fig. 1, and a summary of the results
obtained for these points is reported in Table I.
A direct measure of the off-diagonal long-range order

present in the system is provided by the one-body density
matrix (OBDM)

n1ðr110 Þ ¼ Ω
Z

dr2 � � � drN
Ψ0ðr1; r2;…; rNÞΨ0ðr01; r2;…; rNÞ; ð3Þ

with Ψ0 the ground state wave function and Ω the volume
of the container. In this way, n1ðrÞ is normalized such that
n1ð0Þ ¼ 1, while n1ðjr110 j → ∞Þ → n0 if there is off-
diagonal long-range order, with n0 the condensate fraction.

FIG. 1. Phase diagram of the 2D dipolar Bose gas at zero
temperature. Letters indicate the set of points corresponding to
fixed density and polarization angles explored in this work.

TABLE I. Superfluid densities and condensate fraction for the
points shown in Fig. 1. Figures in parenthesis are the error bars.

nr20 α n0 ρs ρxs ρys

A 512 0,50 0.000 30(4) 0.86(8) 1.06(8) 0.61(8)
B 512 0.53 0.000 55(6) 0.62(6) 0.99(8) 0.26(3)
C 512 0.55 0.0029(3) 0.53(5) 0.92(8) 0.14(2)
D 512 0.57 0.0031(3) 0.49(5) 0.95(8) 0.043(4)
E 512 0.60 0.0047(5) 0.49(5) 0.95(8) 0.027(3)
F 400 0.50 0.0038(3) 1.05(8) 1.07(8) 1.04(8)
G 400 0.55 0.0042(4) 0.63(6) 1.001(7) 0.26(3)
H 400 0.60 0.0052(4) 0.55(5) 1.07(8) 0.028(3)
I 256 0.55 0.015(1) 1.05(8) 1.03(8) 1.08(8)
J 256 0.60 0.011(1) 0.54(5) 1.00(8) 0.080(6)
K 128 0.60 0.071(4) 0.95(7) 0.97(7) 0.93(7)
L 512 0.20 0 0 0 0
M 256 0.40 0.019(2) 1 1 1
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Notice that, in two dimensions, n0 can be nonzero only
at T ¼ 0.
Figure 2 shows a comparison of the one-body density

matrix of the system at points C and L of Fig. 1,
corresponding to the same density nr20 ¼ 512 but different
polarization angles. In all cases n1ðrÞ depends on the
direction due to the anisotropy of the interaction. The lower
curves show two cuts of n1ðrÞ along the X and Y directions,
when the system is in the solid phase (point L), while the
upper curves show the same quantities for the system in the
stripe phase (point C). As it can be seen, all curves show an
oscillatory behavior that is partially a consequence of the
anisotropy of the interaction [23]. Most remarkably, the
curves corresponding to the solid phase decay exponen-
tially to zero, while the ones for the stripe phase saturate to
a common value that corresponds to n0. The condensate
fraction, which appears only in the s-wave term of the
partial wave expansion of n1ðrÞ, has been obtained by
fitting a constant to the intermediate-distance tail in regions
near (but not at) half the box side where the results are
stable. All values in the third column of Table I have been
obtained in this way.
At large densities, where increasing the polarization

angle makes the system change from the solid to the stripe
phase, the condensate fraction increases with increasing α.
This is not surprising since the dipolar interaction is overall
less repulsive when approaching the line of collapse, at the
critical angle αc ≈ 0.615. The situation is reversed at lower
densities, when the system changes from the gas to the
stripe form (points I and J, for instance). In this case and
close to the transition line, the condensate fraction is
expected to approach higher values, as the gas is less
interacting. Perpendicular cuts at fixed polarization angle
and increasing density lead always to a reduction in n0,

consistent with the fact that particles have less effective
space. In any case the largest values of n0 are achieved near
the gas-stripe transition line at the lowest possible densities.
In this way, the large-distance limit of the OBDM of the
stripe phase is always nonzero, as happens with other
supersolid systems.
Even though the presence of the nonzero condensate

fraction value already points towards a superfluid behavior,
it is possible to evaluate directly the superfluid response
of the system in DMC calculations. At finite temperature,
the superfluid fraction ρs is estimated from the winding
number [24], which takes into account the diffusion of
world lines at large imaginary times. At T ¼ 0, this is
equivalent [25] to measuring the diffusion of the center of
mass of the system in the infinite imaginary time limit,
according to the expression

ρs ¼ lim
τ→∞

1

4Nτ

�
DsðτÞ
D0

�
; ð4Þ

whereDsðτÞ¼h½Rc:m:ðτÞ−Rc:m:ð0Þ�2i andD0 ¼ ℏ2=ð2mÞ.
For the 2D system analyzed, we identify the X and Y
components of this expression with the superfluid
fractions along the X and Y directions, according to
ρs ¼ ðρxs þ ρysÞ=2.
Figure 3 shows our results for ρxs, ρ

y
s , and the total ρs for

two perpendicular cuts on the phase diagram. The upper
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FIG. 2. One body density matrix of the 2D dipolar Bose system
at the density nr20 ¼ 512 in the stripe phase for α ¼ 0.55 (solid
circles), and in the solid phase for α ¼ 0.20 (open squares).
Purple circles and green squares, cuts along the X direction; blue
circles and orange squares, cuts along the Y direction. Distance r
is measured in units of r0. Error bars are smaller than 10% of each
measure and have not been included for the sake of clarity.
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FIG. 3. Superfluid fractions along the X direction ρxs (red
crosses), along the Y direction ρys (green squares), and total ρs
(blue stars). The upper panel shows the dependence of these
quantities on the polarization angle at the fixed density
nr20 ¼ 512. The lower panel corresponds to α ¼ 0.6 and different
densities. In all cases the system remains in the stripe phase.
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panel corresponds to a fixed density nr20 ¼ 512 and differ-
ent angles in the region where the system remains in the
stripe phase. The lower panel corresponds to a fixed angle
α ¼ 0.6 but different densities, also in the stripe phase. The
cut at nr20 ¼ 512 and increasing α shows that the X
component of the superfluid fraction is always close to
1, while the Y component decreases to 0, leading to the
overall value ρs ≈ 1=2 near α ¼ αc. Remarkably, the total
superfluid fraction ρs is larger close to the transition line to
the solid phase, decreasing as α increases. In this way, the
superfluid response is discontinuous across the solid-stripe
transition. The fact that ρys (and thus ρs) decrease when α
increases is once again a consequence of the anisotropic
character of the dipolar interaction, which becomes less
repulsive along the X direction with increasing α. Close to
αc the interaction along the X direction is weak and
particles can easily flow in each stripe, but the confinement
of the stripes is stronger and the system becomes more
localized along the Y direction. This is confirmed by the
fact that the optimal values of ηs in Eq. (2) are larger when α
approaches αc at fixed density. A similar situation is found
when the density is increased at constant α. The lower panel
of Fig. 3 shows the different components of the superfluid
fraction at α ¼ 0.6 and increasing density. Once again we
observe that ρys decays to values close to zero already at
nr20 ¼ 256, thus confirming that at high densities the
confinement of the different stripes is very strong. Only
point K in that line presents a large ρys value, but that point
is essentially in the gas-stripe transition line, and we know
the total superfluid fraction ρs ¼ 1 in the gas phase.
Contrarily to what happens when moving from the stripe
to the solid phase, in the gas-stripe transition the change in
ρs, ρxs , and ρys appears to be continuous.
At this point, and according to the previous results, one

could wonder whether stripes are so tightly confined that no
particle exchanges between different stripes is possible. If
that was the case, one could also think that each stripe may
behave as an isolated, (quasi) 1D system. In fact and
according to the results in the last column of Table I, in
some regions the Y component of the superfluid fraction
acquires very low values. However, it never vanishes. This
indicates that, in fact, particle exchange between different
stripes is always possible, though it becomes unlikely in the
limits commented above.
Taking that into account, one can look for traces of a

(quasi) 1D behavior in the regions where ρya ∼ 0. One way
to do that is to analyze the system as a Luttinger liquid, and
to check for consistency in the values of the corresponding
Luttinger parameters. In order to do that we have extracted
the sound velocity c from a fit of the form jkj=2c to the low-
k behavior of the static structure factor SðkÞ evaluated both
in DMC and PIGS. Once with it, we have performed a fit of
the form n1ðuÞ ¼ Au−1=η with η ¼ 2πn=c [26] to the X and
Y components of n1ðrÞ, with the results shown in Fig, 4. As
can be seen, the fit reproduces better the tail of n1ðrÞ along

the X direction, while strong oscillations in the Y component
are clearly visible and n1ðrÞ for r ¼ ð0; yÞ differs signifi-
cantly from the fit. It must be kept in mind, though, that the
large distance behavior of n1ðrÞ in Luttinger liquid theory is
a decaying power law not compatible with a finite con-
densate fraction value, while we have seen before that the
stripe phase OBDM presents a large-distance asymptotic
value n0 ≠ 0. In this way, the curve fits well the calculated X
component of the OBDM at intermediate distances only.
The inset in Fig. 4 shows a snapshot of the system after
thermalization in PIGS, for the same conditions nr20 ¼ 512

and α ¼ 0.6; here, a pair of examples where particle
exchange between different stripes is visible have been
highlighted. It is worth recalling that since simulations in
PIGS are done with open chains (with variational wave
functions at the end points), it is hardly possible to see long
exchange lines crossing the whole simulation box.
In summary, we have performed DMC and PIGS

simulations to analyze the supersolid properties of dipolar
Bose stripes in two dimensions for polarization angles
before collapse. We have evaluated the one-body density
matrix to find that it always presents a finite (though in
some regions, quite small) condensate fraction value, in
contrast to the continuously decaying tail it presents in the
solid phase. We have also evaluated the superfluid fraction
along the X and Y directions to find that, at large densities
and/or polarization angles, the Y component becomes very
small, though it never vanishes. At high densities and
polarization angles the stripes are tightly confined and the
intermediate distance behavior of the OBDM along the
stripe direction has a dependence on the distance that is
somehow compatible with a Luttinger liquid model.
However, particle exchanges, always visible in configura-
tion snapshots, lead to a finite condensate fraction value
and an overall superfluid behavior that, together with the

FIG. 4. One-body density matrix along the X (blue open
squares) and Y (green stars) at α ¼ 0.6 and nr20 ¼ 512. The
solid lines are fits of the form Ax−1=η with for fixed η obtained
from the slope of the static structure factor near the origin. The
inset shows a snapshot of the PIGS simulation, where some of the
particle exchanges are highlighted in black.
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existence of Bragg peaks [14], confirm the supersolid
character of that phase.
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