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We witness multipartite entanglement in the ground state of the Kitaev chain—a benchmark model of a
one dimensional topological superconductor—also with variable-range pairing, using the quantum Fisher
information. Phases having a finite winding number, for both short- and long-range pairing, are
characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the
occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum
Fisher information, even in the absence of a closing energy gap.
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Introduction.—The characterization of quantum phases
and quantum phase transitions (QPTs) via entanglement
measures and witnesses is an intriguing problem at the
verge of quantum information and many-body physics
[1,2]. The study of entanglement [3,4] pushes our under-
standing of QPTs [5–8] beyond standard approaches in
statistical mechanics [9] and sheds new light on the
creation, manipulation, and protection of useful resources
for quantum technologies.
The literature [1] has mostly focused on bipartite

entanglement. A benchmark is the so-called area law
[10–12] that relates the amount of entanglement among
two parts of a many-body system to the surface area
between them [13,14]. For models with short-range inter-
action in one dimension, the von Neumann block entropy
is constant in the gapped phases, while it increases
logarithmically with the system size at criticality [15].
Yet, violations of the area law are not always related to a
closing gap: A logarithmic increase of the von Neumann
entropy occurs also in some gapped phases of one-
dimensional models with long-range interaction [16–19],
as well as for peculiar short-range models [20]. An
alternative approach to bipartite entanglement is the analy-
sis of the two-body reduced density matrix [7,21], often
also indicated as pairwise entanglement.
Multipartite entanglement (ME) allows us to disclose the

richer and more complex structures of a many-body
quantum system [4]. However, ME can be more difficult
to evaluate than bipartite entanglement and has been much
less studied [22–24]. Recently [25–27], ME in the ground
state of models exhibiting symmetry-breaking QPTs has
been witnessed using the quantum Fisher information
(QFI) calculated for the local order parameter. In this case,
the QFI—given by the variance of the order parameter—
diverges (in the thermodynamic limit) at criticality.
Exploiting well-known relations between the QFI and

ME [28–31], it has been possible to witness large ME
in spin systems, such as the Ising [25], XY [26], and the
Lipkin-Meshkov-Glick [25,27] model. This approach,
however, fails to detect ME at topological QPTs [25],
where the fluctuations of local operators do not diverge at
criticality [32]. Witnessing ME in topological models using
the QFI generally require the extension of entanglement
criteria for nonlocal operators [31].
Here we focus on a paradigmatic model showing

topological quantum phases: the Kitaev chain of spinless
fermions in a lattice [33,34] with variable-range pairing
[17,19,35]. We calculate the QFI of the ground state for a
suitable choice of nonlocal observables and witness ME
(the parties being the single sites of the chain) when the
corresponding correlation functions have a sufficiently
slow decay. We show that phases identified by a nonzero
winding number are characterized by a superextensive
scaling of the QFI, signaling the divergence of ME with
the system size. This divergence is found, for short-range
pairing, only at topologically nontrivial phases, hosting
massless edge modes. Instead, for long-range pairing,
superextensivity of the QFI is found whenever the winding
number assumes semi-integer values. Furthermore, for an
arbitrary pairing range, ME is shown to vary suddenly at
QPTs, even when the energy gap in the quasiparticle
spectrum does not close at the boundary lines. Overall,
ME provides more information than that caught by the von
Neumann entropy [17–19], not able to discern between the
phases with different winding numbers of the short-range
or the long-range regime and just detecting the separation
lines between them. Our work addresses an open problem
in the literature—the detection of ME in topological phases
and QPTs—and paves the way towards a characterization
of strongly correlated systems in terms of ME.
The model.—The Kitaev chain is a tight-binding model

with both tunneling and superconducting pairing. This was
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originally studied for nearest-neighbor pairing [33] and
extended to variable-range pairing in Refs. [17,19]. The
corresponding Hamiltonian is

Ĥ ¼ −
J
2

XL

j¼1

ðâ†j âjþ1 þ H:c:Þ − μ
XL

j¼1

�
â†j âj −

1

2

�

þ Δ
2

XL

j¼1

XL−j

l¼1

1

dαl
ðâjâjþl þ â†jþlâ

†
jÞ; ð1Þ

where J > 0 is the hopping amplitude, Δ is the pairing
strength, μ is the chemical potential, and L (assumed even)
is the total number of lattice sites. The operator âj (â†j )
annihilates (creates) a fermion at site j. We consider a
closed chain, with dl ¼l for 1 ≤ l ≤ L=2 and dl ¼ L − l
for L=2 ≤ l < L, and antiperiodic boundary conditions
âjþL ¼ −âj. Following Ref. [36], the Hamiltonian (1) can
be diagonalized exactly by a Bogoliubov transformation.
The resulting quasiparticle spectrum is [17,37]

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ cos kþ μÞ2 þ ½fαðkÞΔ=2�2

q
; ð2Þ

where k ¼ ð2π=LÞðnþ 1
2
Þ (n ¼ 0; 1;…; L − 1). The func-

tion fαðkÞ ¼
P

L−1
l¼1ðsinðklÞ=dαlÞ displays singularities at

k ¼ 0 in the thermodynamic limit if α ≤ 1; it is regular
otherwise. Taking the Fourier transform, Eq. (1) becomes
Ĥ ¼ P

kϵkðâ†k; â−kÞðhk · σÞð âkâ†−k
Þ, where σ is the Pauli

vector, hk ¼ ez cos θk þ ey sin θk is the unit Anderson
vector, and tan θk ¼ ðΔ=2ÞfαðkÞ=ðJ cos kþ μÞ. Varying
k from 0 to 2π, hk winds W ¼ R

2π
0 ðdθk=dkÞðdk=2πÞ times

in the y − z plane. The schematic phase diagram of
the model is shown in Fig. 1: Colored regions refer to
phases with different (and constant) values of the winding
number W.
For short-range pairing (α > 1), W assumes only integer

values:W ¼ 0;�1.W ≠ 0 signals a topologically nontrivial
phase [34], characterized by the presence of massless
(Majorana) edge modes in the open chain [33]. For long-
range pairing (α ≤ 1), semi-integer valuesW ¼ �1=2 appear
[39–41]. We quote the corresponding phases as “long-
range”: The phase for μ=J < 1 supports massive edgemodes
in the open chain, while for μ=J > 1 no edge mode occurs
[40,41]. Long-range phases are characterized by a violation
of the area law for the von Neumann entropy [17,18,42].
For Δ ≠ 0 and in the limit L → ∞, the energy gap

between the superfluid ground state and the first excited
state closes at μ=J ¼ 1 and k ¼ π for all the values of α,
as well as at μ=J ¼ −1 and k ¼ 0 when α > 1 only [see
Fig. 1(a)]. Furthermore, a transition between phases with
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FIG. 1. Phase diagram of the Kitaev chain in the μ=J − α plane
for Δ > 0 [38] (a). Phase diagram in the Δ=J − μ=J plane for
(b) nearest-neighbor (α ¼ þ∞) and (c) infinite-range (α ¼ 0)
pairing. The thick lines mark a closing gap in the quasiparticle
spectrum [Eq. (2)] in the thermodynamic limit L → ∞. Colored
regions highlight different phases with indicated winding number
W and scaling of the Fisher density fQ ¼ FQ=L with the system
size L. Thick curved lines show trajectories in the unit circle in
the y-z plane (dotted line) as k varies from 0 (red dot) to 2π (red
circle); see the text.
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FIG. 2. Phase diagram of the Kitaev chain obtained numerically
from the scaling of the Fisher density as a function of the system
size L, fQ ¼ 1þ cLb [Eq. (5)]. The color scale shows the scaling
exponent b in the μ=J − α plane for Δ ¼ J (a) and in the Δ=J −
μ=J plane for nearest-neighbor (b) and infinite-range (c) pairing.
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different values of the winding numberW is observed when
changing α at α ¼ 1. Remarkably, this transition occurs
without closing the energy gap and is associated with
various discontinuities, for instance, in the mutual infor-
mation and in the decay exponents for the two-point
correlations hâ†i âji and hâiâji [17,41]. In the following,
we will show that, similarly to the QPTs at μ=J ¼ �1, the
transitions at α ¼ 1 are signaled by a diverging derivative
of the QFI.
Figures 1(b) and 1(c) show the phase diagram in the

Δ=J − μ=J plane for α ¼ ∞ and α ¼ 0, respectively.
The energy gap closes at Δ ¼ 0 for jμj=J ≤ 1 and
cos k ¼ −μ=J. For α ≤ 1 and jμj=J > 1 we have a tran-
sition—without closing the energy gap—between W ¼
�1=2 [39], crossing W ¼ 0 on the singular line Δ ¼ 0.
Multipartite entanglement.—In the following, we wit-

ness ME in the ground state jψgsi of Eq. (1) using the QFI,
FQ½jψgsi; Ô�, where Ô is a Hermitian operator that we
specify below. First, let us recall that, in general, the QFI
is convex in the state and can thus be used as a ME
witness [28–31]. We have that FQ½

P
jpjjψ jihψ jj;Ô�≤P

jpjFQ½jψ ji;Ô� holds for arbitrary states and operators
[31], where pj ≥ 0 and

P
jpj ¼ 1. Furthermore,

FQ½jψi; Ô� ¼ 4ðΔÔÞ2jψi for pure states [43]. The QFI of

any κ-partite entangled state ρ̂κ−ent is thus bounded as
FQ½ρ̂κ-ent; Ô� ≤ bκ;Ô, where bκ;Ô ≡maxjψκ-enti4ðΔÔÞ2jψκ-enti is
the maximum over all κ-partite entangled pure states [44].
Here we calculate the QFI with respect to the nonlocal

operator Ôρ ¼
P

L
j¼1 ô

ðjÞ
ρ =2 (ρ ¼ x, y), where

ôðjÞρ ¼ ð−iÞδρ;y ½â†jeiπ
P

j−1
l¼1

n̂l þ ð−1Þδρ;ye−iπ
P

j−1
l¼1

n̂l âj�; ð3Þ

δρ;y ¼ 1 for ρ ¼ y, and δρ;y ¼ 0 otherwise, and n̂j ¼ â†j âj.
This choice is suggested by the relation—via the Jordan-
Wigner transform [36]—of Eq. (1) (for α ¼ ∞) and the
Ising Hamiltonian (for nearest-neighbor interaction among
spin-1=2 particles). Via Jordan-Wigner, Ôρ transforms to
the order parameter of the Ising model, and it is thus
characterized by a large variance in the ferromagnetic
phase. It is interesting to notice (see below) that, with
the same choice of the operator Ôρ, we are able to detect
ME also for arbitrary-range pairing (α < ∞), where the
short-range Ising and the Kitaev Hamiltonians do not map
to each others. This demonstrates that our approach is not
limited to the short-range Kitaev chain (which can be
exactly mapped to the short-range Ising) but can be
extended to study a generic topological model with the
help of an “educated guess” for the choice of the operator.
For the operator Ôρ, the ME bound is bκ;Ôρ

¼ sκ2 þ r2

[37], where s is the integer part of L=κ and r ¼ L − sκ.
Approximating swith L=κ, we have that the violation of the
inequality

fQ½jψgsi; Ôρ� ≤ κ ð4Þ
signals (κ þ 1)-partite entanglement (1 ≤ κ ≤ L − 1)
between sites of the fermionic chain, where fQ ¼ FQ=L
is the Fisher density. In particular, separable states satisfy
fQ ≤ 1, while fQ ¼ L is the ultimate (Heisenberg) bound.
Finally, we point out that the QFI can be experimentally

addressed: It is related to the dynamical susceptibility
[25,45] (see also Refs. [46–48] regarding the detection
of entanglement with similar methods), and a lower bound
can be obtained from the variation of statistical distribu-
tions with the phase shift parameter θ when applying the
transformation e−iθÔ [31,49].
QFI phase diagram.—We have calculated the QFI for

different values of the parameters of the Kitaev chain using
standard exact techniques [36]. The QFI follows an
asymptotic power-law scaling

fQ½jψgsi; Ôρ� ¼ 1þ cLb; ð5Þ
where the coefficients b and c depend on μ=J, δ=J, α, and ρ
but are independent on L. The scaling behavior is reported
schematically in Fig. 1, while Fig. 2 shows numerical
values of b obtained up to L ≈ 1000.
The scaling exponent b is directly related to the behavior

of the correlation function for the operator Ôρ. Indeed,
noticing that for the ground state of the Kitaev model
hψgsjÔρjψgsi ¼ 0, we can rewrite the Fisher density
fQ½jψgsi; Ôρ� ¼ 4hψgsjÔ2

ρjψgsi=L as

fQ½jψgsi; Ôρ� ¼ 1þ
XL−1

l¼1

CρðlÞ; ð6Þ

where CρðlÞ ¼ hψgsjôð1Þρ ôð1þlÞ
ρ jψgsi. For instance, an expo-

nentially decaying correlation, CρðlÞ ¼ e−dl=ξ on a ring,
with ξ > 0 independent on L, gives b ¼ 0 and c ¼
2=ðe1=ξ − 1Þ in the thermodynamic limit. In this case,
the QFI is extensive: c > κ − 1 is obtained for ξ−1 <
log½ðκ þ 1Þ=ðκ − 1Þ� and witnesses κ-partite entanglement
that remains constant when increasing the system size.
Instead, when b > 0, the QFI is superextensive: The larger
L is, the larger the witnessed κ-partite entanglement
is. Values 0 < b < 1 can be related to a rescaling of
the correlation functions with the system size, CρðlÞ ¼
Lb−1cρðl=LÞ, giving c ¼ R

1
0 dxcρðxÞ. This is obtained, for

instance, when CðlÞ ∼ 1=l1−b. For long-range pairing,
Δ > 0 and μ=J ≥ 1, the correlation function is staggered
[37], and we witness ME by calculating the QFI with

respect to the staggered operator ÔðstÞ
ρ ¼ P

L
j¼1ð−1ÞjôðjÞρ =2:

a choice that maximizes the variance ðΔÔðstÞ
ρ Þ2jψgsi.

In Figs. 1(a) and 2(a), we plot b in the μ=J − α plane. For
short-range pairing (α > 1), we find b ¼ 1 for jμj=J < 1
and b ¼ 0 for jμj=J > 1: A superextensive QFI is observed
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only in the topologically nontrivial phase. On the critical
lines jμj=J ¼ 1, we have b ¼ 3=4, that is associated to the
algebraic asymptotic decay of the correlation functions,
Cxðl → LÞ ∼ L1=4, implied at α > 2 by conformal invari-
ance [9,50]. For α ≈ 1, the numerical calculations are
affected by finite-size effects. We argue that b ¼ 1=2 for
jμj=J > 1 and b ¼ 3=4 for jμj=J ≤ 1. For long-range
pairing (α < 1), b ¼ 3=4 for μ=J ≠ 1 and b ¼ 1=2 for
μ=J ¼ 1. The above scalings refer—for every α—to the
QFI relative to an optimal choice of operators [51], that is,

Ôx for μ=J ≤ 1 and ÔðstÞ
y for μ=J ≥ 1.

In Figs. 1 and 2, we also plot b in the Δ=J − μ=J plane
for nearest-neighbor [α ¼ ∞, panel (b)] and infinite-range
[α ¼ 0, panel (c)] pairings. Notice that the regime Δ < 0 is
mapped on the one at Δ > 0 by the phase redefinition âj →
�iâj; this operation also interchanges fQ½jψgsi; Ôx� ↔
fQ½jψgsi; Ôy� and fQ½jψgsi; ÔðstÞ

x � ↔ fQ½jψgsi; ÔðstÞ
y �. For

α ¼ ∞ and Δ ≠ 0, we have b ¼ 1 for jμj=J < 1, b ¼ 3=4
for jμj=J ¼ 1, and b ¼ 0 elsewhere. For jΔj=J ¼ 0 and
jμj=J < 1, we have b ¼ 1=2. Again, a superextensive
scaling of the QFI is found in the correspondence of phases
with a nonzero winding number. For α ¼ ∞ (when the
Kitaev Hamiltonian maps to the short-range Ising model,
for Δ ¼ J), our results agree with existing calculations
[25,26]. In particular, the correlation function of the Ôx
operator is exponentially decaying for jμj=J > 1 and
constant for jμj=J < 1: Genuine L-partite entanglement
is witnessed at μ ¼ 0 where CxðlÞ ¼ 1∀l [37]. For Δ ¼ 0
(and every α), the Kitaev chain maps to the XX model. It is
known [52] that the ground state is a product state for
jμj=J > 1, and, accordingly, we find c ¼ 0 in this case [37].
In the full diagram of Fig. 2(b), the optimal choice of
operators is Ôx for Δ=J ≥ 0 and Ôy for Δ=J ≤ 0. For
infinite-range pairing (α ¼ 0), we find b ¼ 3=4 everywhere,
except at the phase boundaries: b¼1=2 for μ=J¼1 and
Δ ≠ 0, as well as for Δ ¼ 0 and jμj=J < 1, while b ¼ 0 for
Δ ¼ 0 and jμj=J ≥ 1. We can distinguish four regions in
the phase diagram of Fig. 2(c), singled out by the operators
optimizing the QFI. For μ=J < 1, the optimal operators
[51] are Ôx for Δ > 0 and Ôy for Δ < 0, while, if μ=J > 1,

they are ÔðstÞ
y for Δ > 0 and ÔðstÞ

x for Δ < 0.

Next, we show that the transition between phases
characterized by different values of the winding number
W is signaled by a diverging derivative of the QFI. This is
illustrated in Fig. 3, where we plot the weighted derivative
of fQ with respect to μ=J [panel (a)], α [panel (b)], andΔ=J
[panels (c) and (d)]. These results can be understood by
taking the derivative of Eq. (5) with respect to a parameter η
of the model (i.e., η ¼ μ=J, Δ=J, or α):

1

fQ

∂fQ
∂η ¼ cLb

1þ cLb ×

�
1

c
∂c
∂ηþ

∂b
∂η logL

�
: ð7Þ

In the interesting case c ≠ 0 andb ≥ 0, Eq. (7) diverges in the
thermodynamic limit L → ∞ either because of a divergence
of ∂ηc=c or, even when ∂ηc is smooth, because of ∂ηb ≠ 0.
Figure 3, obtained at L ¼ 1000, shows that, while ∂μfQ=fQ
and ∂ΔfQ=fQ vary sharply at the phase transition points in
Fig. 1 (see [37] for a plot of the coefficientsb andc),∂αfQ=fQ
varies smoothly as a function α. Yet, a finite-size scaling
analysis [37] shows that, in the limitL → ∞ (up toL ¼ 5000
in our numerics), ∂αfQ=fQ tends to peaks at α ¼ 1.
Therefore, a fast change of the QFI is able to detect the
transition at α ¼ 1—associated to a change of the winding
number—even if it occurs without closing the energy gap in
the quasiparticle spectrum. We notice here that the fidelity
susceptibility [53,54] has a similar behavior [55].
Conclusions.—The quantum Fisher information detects

multipartite entanglement in the topological and long-range
phases (with nonvanishing winding numbers) of the Kitaev
chainwith variable-range pairing. A key aspect is the calcula-
tion of the quantum Fisher information relative to nonlocal
operators showing long-range correlations,whereas the quan-
tum Fisher information relative to local operators is unable to
detect entanglement in this model, as noted in Ref. [25].
Furthermore, QPTs are identified by the divergence of the

derivative of the quantum Fisher information with respect to
different control parameters, even when the phase transition
is not associated to a closing gap in the excitation spectrum.
Our results are a step forward in the study of entanglement in
topological superconductors by providing a clear evidence of
multipartite entanglement in these systems.

We thank S. Ciuchi, S. Paganelli, and D. Vodola for
useful discussions.
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