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In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale
cascading failure. Here we derive a continuous model to advance our understanding of cascading failures in
power-grid networks. The model accounts for both the failure of transmission lines and the desynch-
ronization of power generators and incorporates the transient dynamics between successive steps of the
cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium
state with high energy to an equilibrium state with lower energy, which can be suitably described in a
closed form using a global Hamiltonian-like function. From this function, we show that a perturbed system
cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would
correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that,
in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the
individual perturbations. These results offer new insights into the current understanding of cascading
dynamics, with potential implications for control interventions.
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Cascading processes underlie a myriad of network
phenomena [1], including blackouts in power systems
[2,3], secondary extinctions in ecosystems [4,5], and com-
plex contagion in financial networks [6,7]. In all such cases,
an otherwise small perturbation may propagate and even-
tually cause a sizable portion of the system to fail. Various
system-independent cascade models have been proposed
[8–13] and used to draw general conclusions, such as on the
impact of interdependencies [14] and countermeasures [15].
There are outstanding questions, however, for which it is
necessary to model the cascade dynamics starting from the
actual dynamical state of the system.
In power-grid networks, the state of the system is deter-

mined by the power flow over transmission lines and the
frequency of the power generators, which must be, respec-
tively, below capacity and synchronized under normal steady-
state conditions. Although a local perturbation has limited
impact on the connectivity of the network, it may trigger a
cascadeoffailuresandprotective responses that switchoffgrid
components and may also lead generators to lose synchrony.
Muchof our current understandingabout this processhasbeen
derived from quasi-steady-state cascade models [16–21],
which use iterative procedures to model the successive
inactivation of network components caused by power flow
redistributions,whileomitting the transient dynamicsbetween
steady states aswell as the dynamics of the generators. Further
understanding has resulted from stability studies focused on
the synchronization dynamics of power generators in the
absence of flow redistributions [22–26].
Yet, to date no theoretical approach has been developed

to incorporate at the same time these two fundamental
aspects of power-grid dynamics—frequency change and
flow redistribution—in the modeling of cascading failures

[27]. The goal of our study is to fill this gap and consider
the interaction between these two factors. Our framework is
inspired by energy function analysis approaches considered
in the study of power system stability [28,29] and of
bistability of circuit elements [30].
Specifically, in this Letter, we introduce a time-

continuous cascade model that includes the dynamics of
the state variables—governed by the swing equations of the
generators, frequency dependence of loads, and power flow
equations—as well as the dynamics of the status variables
describing the on-off (i.e., operational-disabled) condition
of the transmission lines. Within this model, the steady
operating states of the system correspond to stable equi-
libria, and a cascade event is a phase-space transition from
one stable equilibrium to another. We study these states
and show that the stable equilibria are the local minima
of an energylike function. This leads to numerous important
implications that have not been systematically studied
before. In particular, it follows from the properties of this
function that a perturbed system cannot always reach the
equilibrium state predicted by quasi-steady-statemodels and
may instead approach an equilibrium corresponding to a
larger cascade; this highlights the importance of the dynam-
ics between successive steps of a cascade, as considered in
our continuous model, which is a factor that has remained
unexplored with few exceptions [1,31–33]. It also follows
that the equilibrium energy does not depend monotonically
on the number of failures and that cascades triggered by
multiple perturbations depend strongly on the perturbation
order. These results suggest the possibility of cascade
mitigation using judiciously designed perturbations to steer
the system to a preferred equilibrium that would not be
reached spontaneously.

PRL 119, 248302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

0031-9007=17=119(24)=248302(5) 248302-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.248302
https://doi.org/10.1103/PhysRevLett.119.248302
https://doi.org/10.1103/PhysRevLett.119.248302
https://doi.org/10.1103/PhysRevLett.119.248302


We first consider the protective operation, common to
most power networks, that removes a transmission line
when the flow on it exceeds its capacity. We associate each
line l with a continuous variable ηl representing its on-off
status (as well as the continuous process of switching
between the two conditions) and a parameter λl indicating
the fraction of the line capacity used by the flow. As shown
below, this allows us to incorporate the line status into the
dynamical equations by scaling the power flow terms by ηl,
with ηl representing the normal status for λl < 1 and the
failed status for λl ≥ 1, where ηl is thus constrained to
the unit interval. To model the automatic removal of the
overloaded lines, we can then define the dynamics of ηl as

_ηl ¼ fðηlÞ − λl; ð1Þ
where the rhs is defined to satisfy three physical conditions:

(I) for λl < 1, there are three equilibria ηðfÞl < ηðcÞl < ηðnÞl ,

whereηðnÞl ≈ 1 is a stable equilibrium representing thenormal

operation status, ηðfÞl ≈ 0 is a stable equilibrium representing

the failed status, and ηðcÞl is an unstable equilibrium marking
the critical value below which ηl evolves to the failed status;

(II) for λl ≥ 1, only the equilibrium ηðfÞl remains stable,

which is satisfied if the localmaximumoff in ðηðcÞl ; ηðnÞl Þ is 1;
(III) ηðcÞl is always close to 1, since a line should be fully
operational under normal conditions. The dynamics does not
depend sensitively on the details of function f provided these
conditions are satisfied. Throughout, we use overdot to
indicate time derivative.
Here we define fðηlÞ¼a−1½ηl−1−ð1−ηlÞ−1�þaη4l−b,

where a and b are positive parameters. The terms ηl−1 and
−ð1 − ηlÞ−1 constrain ηl above 0 and below 1, respectively,
as they ensure that fðηlÞ→∞ for ηl→0þ and fðηlÞ→−∞
for ηl→1−. The term η4l allows f to have three roots—

corresponding to ηðfÞl , ηðcÞl , and ηðnÞl for λl ¼ 0, as shown in
Fig. 1(a). The parameters a and b are adjustable

to set ηðfÞl close to 0, to set ηðcÞl and ηðnÞl sufficiently close

to 1, and to set the local maximum of f to 1. For this
choice of function f, Eq. (1) satisfies conditions (I)–(III).
Moreover, the equation can be rewritten as a gradient
system _ηl ¼ −dϕðηlÞ=dηl, where ϕðηlÞ ¼ λlηl − FðηlÞ,
and dFðηlÞ=dηl ¼ fðηlÞ. As shown in Fig. 1(b), the stable
equilibria of this system correspond to the local minima
of ϕðηlÞ.
Following a perturbation, the power flowing on trans-

mission lines can change dynamically. When the flow on
line l reaches its capacity (λl ≥ 1), the system will
experience a saddle-node bifurcation and the status variable

ηl will evolve to the stable equilibrium ηðfÞl , representing a
line switch-off operation. This is a one-way action, since

the equilibrium ηðfÞl is stable for any value of λl.
Having defined the dynamics of the status variables, we

now incorporate the system’s protective response into the
dynamical equations governing the state of the network. In a
network of n nongenerator nodes, each such node is an
electric point where power is extracted by a load, received
from generators, and/or redistributed among transmission
lines.We denote byng the number of generators and by nl the
number of transmission lines. To proceed, we consider the
extended representation of the network [37] in which each
generator is now an additional node connected to the network
through a virtual line (not included in nl and not subject to
failure), leading to a network of nþ ng nodes. For notational
convenience, we reindex the generators as the first ng nodes.
Assuming that the voltage satisfies jVij ≈ 1 (in per unit)

for all nodes and that no real power is lost on transmission
lines, we can define the state of a power system as
x ¼ ðω; δ; ηÞ. Here, ω ¼ ðωiÞ are the frequencies of the
generators relative to the system’s nominal frequency,
δ ¼ ðδiÞ are the phase angles of all other nodes relative
to a reference node (taken to be i ¼ 1, so that δ1 ≡ 0), and
η ¼ ðηlÞ are the status variables of the (nonvirtual) trans-
mission lines L, where l ∈ L. The state of the system is
suitably determined by the following equations:

_ωi ¼ −
Di

Mi
ωi −

1

Mi

�
Pi þ

Xngþn

j¼ngþ1

~Bij sin δij

�
; i ¼ 1; 2;…; ng;

_δi ¼ ωi − ω1; i ¼ 2;…; ng;

_δi ¼ −
1

Ti

�
Pi þ

Xng
j¼1

~Bij sin δij þ
Xngþn

j¼ngþ1

~Bijηli-j sin δij

�
− ω1; i ¼ ng þ 1;…; ng þ n;

_ηli-j ¼ 10

�
fðηli-jÞ −

~Bijð1 − cos δijÞ
Wli-j

�
; li-j ∈ L:

ð2Þ

Here, δij ¼ δi − δj and ~B is a symmetric matrix with
nonzero elements ~Bij ¼ −1=xli-j , where xli-j is the transient
reactance of a generator or is the reactance of a transmission
line, depending on whether the line connecting i and j is
virtual or not. The first two equations are the swing

equations describing the dynamics of the generators, where
Mi is the generator rotor inertia, Di is the rotor damping
ratio, and Pi is the negative of the mechanical power input

PðmÞ
i of the generator [38]. The third equation describes loads

(and nongenerator nodes in general, under the assumption
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that they include some frequency-dependent power ex-
change) as first-order rotors, where Ti is the load frequency

ratio and Pi is the power PðdÞ
i demanded at the node. We

further assume that
Pngþn

i¼1 Pi ¼ 0, so that there exists an
equilibrium point atωi ¼ 0 and δi ¼ cte. Note that the term
representing the power flow on line li-j is multiplied by the
status variable ηli-j , which automatically turns off the line in

the event of an overload (when ηl → ηðfÞl ). The last equation
describes the dynamics of the status variables, where λli-j in

Eq. (1) is replaced by ~Bijð1 − cos δijÞ, the reactance energy
stored in the transmission line li-j, divided by Wli-j

, the
maximum reactance energy that line li-j can hold. The
prefactor 10 in this equation assures that the time scale for
line failures is much shorter than that of the other dynamical
changes in the network. Formore details on the derivation of
Eq. (2), see Supplemental Material [34].
Importantly, we can show that Eq. (2) can be derived

from a Hamiltonian-like system of the form

_x ¼ J∇ΨðxÞ; ð3Þ
where ΨðxÞ is an energy function defined as

ΨðxÞ ¼
Xng
i¼1

�
1

2
Miω

2
i þ

Xngþn

j¼ngþ1

~Bijð1 − cos δijÞ
�

þ
Xngþn

i¼ngþ1

Xngþn

j¼iþ1

~Bijð1 − cos δijÞηli-j

þ
Xngþn

i¼2

Piδi −
X
li-j∈L

Wli-j
Fðηli-jÞ ð4Þ

and J is a matrix of the form

J ¼

2
66664

J11 J12 J13 0

−JT12 0 0 0

−JT13 0 J33 0

0 0 0 J44

3
77775: ð5Þ

In this matrix, the off-diagonal blocks are

J12 ¼

2
6666666664

1
M1

1
M1

� � � 1
M1

−1
M2

0 � � � 0

0 −1
M3

� � � 0

..

. ..
. . .

. ..
.

0 0 � � � −1
Mng

3
7777777775
; J13 ¼

2
66664

1
M1

� � � 1
M1

0 � � � 0

..

. ..
. ..

.

0 � � � 0

3
77775;

ð6Þ
and the diagonal blocks are

J11 ¼ diag
�
−
M1

D2
1

;−
M2

D2
2

;…;−
Mng

D2
ng

�
;

J33 ¼ diag

�
−

1

Tngþ1

;−
1

Tngþ2

;…;−
1

Tngþn

�
;

J44 ¼ 10 × diag

�
−

1

W1

;−
1

W2

;…;−
1

Wnl

�
:

ð7Þ

For details on the derivation of Eq. (3), see Supplemental
Material [34].
Crucially, the matrix J is the sum of a skew-symmetric

matrix and a diagonal matrix with nonpositive elements,
from which we can show that dΨ(xðtÞ)=dt ¼ ∇ΨðxÞT _x ¼
∇ΨðxÞTJ∇ΨðxÞ ≤ 0. Moreover, because J is also full rank
(which follows from its reduced row echelon form), we
have that dΨ(xðtÞ)=dt ¼ 0 if and only if ∇ΨðxÞ ¼ 0, and
hence if and only if _x ¼ J∇ΨðxÞ ¼ 0. Thus, when the
network is perturbed, the energy function ΨðxÞ monoton-
ically decreases as the system evolves and becomes
constant again only when the system reaches an equilib-
rium point of Eq. (3) [and hence of Eq. (2)]. Such equilibria
represent stable steady states, where the generators are
synchronized [ω1ðtÞ ¼ ω2ðtÞ ¼ � � � ¼ ωngðtÞ], the angle
differences are fixed for all pairs of nodes, and the flow
is below capacity for all operating transmission lines.
We first illustrate our formalism on Iceland’s power-grid

network, shown in Fig. 2(a) (for parameter setting, see
Supplemental Material [34]). The system is designed to
have a stable steady state with no additional failures when
any single transmission line is missing (provided the
network remains connected), which is verified in our
simulations. We test whether such a cascade-free steady
state is actually reached following the removal of a line
when the transient dynamics between steady states repre-
sented in our model is taken into consideration. Starting
from the stable steady state determined by Eq. (2), we
simulate all 68 single-line removal perturbations that keep
the network topologically connected (performed by chang-
ing ηl to ηðfÞl ). Of these, ten do not converge to the best
available stable steady state and instead undergo sub-
sequent failures (Fig. S3 in Supplemental Material [34]).
Insights into the underlying mechanism are provided by the

0 0.5 1

-4

-2

0

2

4

0 0.5 1
0

2

4

6
(a) (b)

FIG. 1. Line-status switch model. (a) Function fðηlÞ for
a ¼ 10, whose roots are the equilibrium points of Eq. (1) when
λl ¼ 0 (for other values of λl, see Fig. S1 in Supplemental
Material [34]). (b) Potential function ϕðηlÞ ¼ λlηl − FðηlÞ,
where the local minima for λl ¼ 0 correspond to the stable
equilibria in (a). When λl is increased past 1, the local minimum

ηðnÞl merges with ηðcÞl and then disappears.
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example shown in Figs. 2(a)–2(c), where a sequence of line
overloads separates the network into five clusters. As
shown in Fig. 2(d), the system would eventually have
approached the designed steady state with no additional
failures, but a line overload—whose automatic switch-off
triggers subsequent overloads—occurs before the system
can reach that state. In this case, no feasible trajectory
exists in the phase space connecting the initial state to the
steady state predicted by quasi-steady-state models. This
scenario is common in general, as shown for five other
systems in the 3rd column of Table S2 (Supplemental
Material [34]).
When the network is subject to multiple perturbations,

our framework shows that the cascade outcome will
generally depend on the order and timing of the perturba-
tions. A natural measure to quantify this difference is the
size C0 (i.e., number of nodes) of the largest connected
cluster in the postcascade stable state. As an illustration, we
consider the following three scenarios for two-line removal
perturbations: (i) remove line li1-j1 and then, after the stable
state is reached, remove line li2-j2 ; (ii) the same as in (i) but
for li1-j1 swapped with li2-j2 ; (iii) remove li1-j1 and li2-j2
concurrently. Considering all 2117 pairs of lines
ðli1-j1 ;li2-j2Þ that keep Iceland’s network connected after
their removal (but not necessarily after the resulting
cascading failures), our simulations indicate that 30.0%
of these perturbations lead to cascades in at least one of the
scenarios above. For this subset of line pairs, we obtain
that: (a) “order matters” in 27.9% of the cases, in that C0
differs for at least one of the scenarios; (b) choosing
between the orders in (i) and (ii) leads to the largest C0

in 20.8% of the cases; (c) (i) and (ii) lead to equally best C0
in 4.3% of the cases; (d) the concurrent removal scenario
(iii) trumps (i) and (ii) in the remaining 2.8% of the cases
(for specific examples, see Figs. S4 and S5 in Supplemental
Material [34]). Similar trends are observed for all five other
systems considered, as shown in Table S2 (Supplemental
Material [34]). This order dependence has potential impli-
cations for control, as it can be exploited in proactive
line removals to prevent subsequent failures (Fig. S6 in
Supplemental Material [34]). This reveals a sharp contrast
between processes for which order is immaterial, such as
percolation, and the cascades considered here.
Taking the analysis one step further, our formalism offers

unique insight into the relation between line removal
perturbations and energy levels. Figure 3(a) shows all
energy levels for stable steady states of the IEEE 14-bus
test system (chosen in place of Iceland’s network to avoid a
cluttered picture) for all combinations of one to seven line
removals that keep the network connected. Figure 3(b)
shows the states that the system actually approaches
following these successive line removals—the missing
states [compared to Fig. 3(a)] are the ones not reached
because the system undergoes a cascade.
Two major results follow from this. First, it confirms that

upon perturbation the system often does not reach the
available stable steady state with smallest number of
failures (e.g., for seven line removals, this is so for 98%
of all cases). Second, the range of energy levels with kþ 1
line removals overlaps with the range for k line removals.
There are, for example, stable steady states with only one
line failure at a lower energy than many stable states with
2, 3, …, 6 line failures. This shows that, following a
perturbation that could eventually lead to a stable state with
multiple failures, the system can in principle be steered to a
lower-energy state which has, nevertheless, a reduced
number of failures. Crucially, this is possible without
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FIG. 2. Simulated cascade event in Iceland’s power grid.
(a) Diagram of the network, which consists of 35 generators
(squares), 189 nongenerator nodes (circles), and 203 transmission
lines (line segments) [40]. The removal of the marked line (cross
symbol) triggers a sequence of six subsequent line failures
(magenta) that separate the network into five clusters (color
coded). (b),(c) Corresponding generator frequencies ωi (b) and
line-status variables ηl (c) as functions of time [color coded as in
(a)]. (d) Corresponding fraction λl of the line capacity used,
should the line overloaded at 0.2 s (arrow) not be disabled.
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FIG. 3. Energy levelsΨðxÞ of the stable states in the 14-bus test
system. Each panel shows all combinations of 1 (left column)
to 7 (right) successive line removals that leave the network
connected. (a) All stable states without additional failures
determined using the MATLAB function fsolve. (b) Subset of
stable states in (a) that the system actually evolves to for the same
line removals as in (a). Also marked are the fractions of
perturbations for which a stable state is identified (a) and the
fractions of those stable states actually reached (b). The diagram
on the rhs shows the topology of the network.
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external input of energy, as the system tends to go sponta-
neously to lower-energy states following a perturbation.
In summary, the model presented here accounts—in a

single phase space—for the interaction between the full
dynamics of a cascade (including transients) and the
changes to the underlying network structure imposed by
the resulting failures. The results explain the combinatorial
impact of perturbations, identify conditions under which a
cascade may develop despite the presence of a stable state
that would withstand the perturbation, and suggest new
opportunities for cascade control.

The authors thank Takashi Nishikawa for feedback on the
manuscript. This work was supported by an Institute for
Sustainability and Energy at Northwestern (ISEN) Booster
Award,National ScienceFoundation (NSF)GrantNo.DMS-
1057128, Simons Foundation Award No. 342906, and
Advanced Research Projects Agency-Energy (ARPA-E)
Award No. DE-AR0000702. The views and opinions of
authors expressed herein do not necessarily state or reflect
those of theUnitedStatesGovernment or any agency thereof.

*motter@northwestern.edu
[1] A. E. Motter and Y. Yang, Phys. Today 70, No. 1, 32 (2017).
[2] R. Liscouski et al., Final Report on the August 14, 2003

Blackout in the United States and Canada: Causes and
Recommendations, 2004.

[3] F. Vandenberghe et al., Final Report of the Investigation
Committee on the 28 September 2003 Blackout in Italy,
2004.

[4] J. A. Dunne and R. J. Williams, Phil. Trans. R. Soc. B 364,
1711 (2009).

[5] S. Sahasrabudhe and A. E. Motter, Nat. Commun. 2, 170
(2011).

[6] P. Gai and S. Kapadia, Proc. R. Soc. A 466, 2401 (2010).
[7] M. Elliott, B. Golub, and M. O. Jackson, Am. Econ. Rev.

104, 3115 (2014).
[8] D. J. Watts, Proc. Natl. Acad. Sci. U.S.A. 99, 5766 (2002).
[9] A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R)

(2002).
[10] K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev.

Lett. 91, 148701 (2003).
[11] P. Crucitti, V. Latora, and M. Marchiori, Phys. Rev. E 69,

045104 (2004).
[12] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.

Havlin, Nature (London) 464, 1025 (2010).
[13] C. D. Brummitt, G. Barnett, and R. M. D’Souza, J. R. Soc.

Interface 12, 20150712 (2015).
[14] C. D. Brummitt, R. M. D’Souza, and E. A. Leicht, Proc.

Natl. Acad. Sci. U.S.A. 109, E680 (2012).
[15] A. E. Motter, Phys. Rev. Lett. 93, 098701 (2004).
[16] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman,

Chaos 17, 026103 (2007).
[17] M. Anghel, K. A. Werley, and A. E. Motter, in Proceedings

of the 40th Annual HICSS (IEEE, New York, 2007), Vol. 1,
p. 113.

[18] D. Watts and H. Ren, in Proceedings of the 2008 IEEE
International Conference on Sustainable Energy Technol-
ogy (IEEE, New York, 2008), p. 1200.

[19] R. D. Zimmerman, C. E. Murillo-Snchez, and R. J. Thomas,
IEEE Trans. Power Syst. 26, 12 (2011).

[20] D. Witthaut, M. Rohden, X. Zhang, S. Hallerberg, and M.
Timme, Phys. Rev. Lett. 116, 138701 (2016).

[21] A. Moussawi, N. Derzsy, X. Lin, B. K. Szymanski, and G.
Korniss, Sci. Rep. 7, 11729 (2017).

[22] Y. Susuki, I. Mezić, and T. Hikihara, J. Nonlinear Sci. 21,
403 (2011).

[23] M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Phys.
Rev. Lett. 109, 064101 (2012).

[24] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa,
Nat. Phys. 9, 191 (2013).

[25] F. Dörfler, M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci.
U.S.A. 110, 2005 (2013).

[26] P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber,
Nat. Commun. 5, 3969 (2014).

[27] Theoretical understanding is especially needed given that
available reports of empirical data on cascade blackouts
generally do not include detailed information about gen-
erator behavior along with power flow information.

[28] A. R. Bergen and D. J. Hill, IEEE Trans. Power Appar. Syst.
PAS-100, 25 (1981).

[29] A. Pai, Energy Function Analysis for Power System Stability
(Springer, New York, 2012).

[30] C. L. DeMarco, IEEE Control Syst. Mag. 21, 40 (2001).
[31] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D.

Helbing, Phys. Rev. Lett. 100, 218701 (2008).
[32] S. P. Cornelius, W. L. Kath, and A. E. Motter, Nat. Com-

mun. 4, 1942 (2013).
[33] B. Schäfer, D. Witthaut, M. Timme, and V. Latora, arXiv:

1707.08018.
[34] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.119.248302, which in-
cludes Refs. [35,36], for details of the analysis and addi-
tional examples.

[35] H. Zheng and C. L. DeMarco, in Proceedings of the
North American Power Symposium, 2010 (IEEE, NewYork,
2010), p. 1.

[36] F. Milano, IEEE Trans. Power Syst. 20, 1199 (2005).
[37] T. Nishikawa and A. E. Motter, New J. Phys. 17, 015012

(2015).
[38] These equations follow from Newton’s second law applied

to the generator rotor [39]: Ii _ωi ¼ −D̄iωi þ ðT ðmÞ
i − T ðeÞ

i Þ,
where Ii is the moment of inertia, D̄i is the damping

coefficient, T ðmÞ
i is the mechanical torque, and T ðeÞ

i is
the torque due to electrical load in the network. Thus, Mi¼
ðωo=PoÞIi, Di¼ðωo=PoÞD̄i, P

ðmÞ
i ¼ ½ðωi þ ωoÞ=Po�T ðmÞ

i ,

and
Pngþn

j¼ngþ1
~Bij sin δij ¼ ½ðωi þ ωoÞ=Po�T ðeÞ

i , where the

relative frequency ωi is assumed to be small compared to
the nominal frequency ωo, and the base power Po is used to
transform the power terms into per unit quantities.

[39] J. J. Grainger and W. D. Stevenson, Power System Analysis
(McGraw-Hill, New York, 1994).

[40] Iceland’s transmission network, http://www.maths.ed.ac.uk/
optenergy/NetworkData/howtouse.html (accessed: 2016-
05-18).

PRL 119, 248302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

248302-5

https://doi.org/10.1063/PT.3.3426
https://doi.org/10.1098/rstb.2008.0219
https://doi.org/10.1098/rstb.2008.0219
https://doi.org/10.1038/ncomms1163
https://doi.org/10.1038/ncomms1163
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1257/aer.104.10.3115
https://doi.org/10.1257/aer.104.10.3115
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1103/PhysRevE.66.065102
https://doi.org/10.1103/PhysRevE.66.065102
https://doi.org/10.1103/PhysRevLett.91.148701
https://doi.org/10.1103/PhysRevLett.91.148701
https://doi.org/10.1103/PhysRevE.69.045104
https://doi.org/10.1103/PhysRevE.69.045104
https://doi.org/10.1038/nature08932
https://doi.org/10.1098/rsif.2015.0712
https://doi.org/10.1098/rsif.2015.0712
https://doi.org/10.1073/pnas.1110586109
https://doi.org/10.1073/pnas.1110586109
https://doi.org/10.1103/PhysRevLett.93.098701
https://doi.org/10.1063/1.2737822
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1103/PhysRevLett.116.138701
https://doi.org/10.1038/s41598-017-11765-1
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1007/s00332-010-9087-5
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1038/nphys2535
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1038/ncomms4969
https://doi.org/10.1109/TPAS.1981.316883
https://doi.org/10.1109/TPAS.1981.316883
https://doi.org/10.1109/37.969134
https://doi.org/10.1103/PhysRevLett.100.218701
https://doi.org/10.1038/ncomms2939
https://doi.org/10.1038/ncomms2939
http://arXiv.org/abs/1707.08018
http://arXiv.org/abs/1707.08018
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.248302
https://doi.org/10.1109/TPWRS.2005.851911
https://doi.org/10.1088/1367-2630/17/1/015012
https://doi.org/10.1088/1367-2630/17/1/015012
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html
http://www.maths.ed.ac.uk/optenergy/NetworkData/howtouse.html

