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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels, giving rise to an
effective tunneling between these two synthetic layers. Remarkably, because of this coupling, the interlayer
interaction at nonzero relative angular momentum can become dominant, resembling a hollow-core
pseudopotential. In the weak tunneling regime, this interaction favors the formation of singlet states, as we
explicitly show by numerical diagonalization, at fillings ν ¼ 1=2 and ν ¼ 2=3. We discuss possible
candidate phases, including the Haldane-Rezayi phase, the interlayer Pfaffian phase, and a Fibonacci
phase. This demonstrates that our method may pave the way towards the realization of non-Abelian phases,
as well as the control of topological phase transitions, in graphene quantum Hall systems using optical
fields and integrated photonic structures.
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Introduction.—The fractional quantum Hall (FQH)
effect is a fascinating phenomenon, where electron-electron
interactions and a magnetic field lead to strong correlations
[1–3]. Soon after the initial discovery, it was realized [4–7]
and experimentally confirmed [8,9] that the electron spin
plays an important role at several fillings. More generally,
multicomponent FQH phases [10] occur in systems with
subbands, as wide quantum wells [11–14], with layers, as
double wells [15,16], or with degenerate valleys, as an
AlAs quantum well [17] or graphene [18–21]. Much effort
has been made towards engineering system parameters like
tunneling, in order to realize different phases. Here we
propose a new method based on light-matter interactions
which enables flexible control in a synthetic FQH bilayer.
Interactions between light and graphene quantum Hall

samples have been the subject of many theoretical [22–25]
and experimental [26–29] studies. FQH phases in inte-
grated GaAs quantum well-cavity structures have also been
explored experimentally [30]. A distinctive feature of
graphene is the linear dispersion, resulting in nonequi-
distant Landau levels (LLs) [31] which can selectively be
coupled with resonant light.
The present Letter explores this possibility. While in the

absence of light a large gap freezes out all but one LL,
resonant light coupling to an empty level provides an
effective tunneling to this new degree of freedom. The
coupled LLs can then be viewed as two layers of a physical
bilayer. Depending on the tunneling rate, which is tunable
via the laser intensity, the system either polarizes in the
lower dressed LL, or it realizes a singlet phase. An analysis
of the Coulomb interaction between different LLs shows

that the repulsion between singlet pairs becomes particu-
larly small when first and second LLs are coupled,
resembling a hollow-core Haldane pseudopotential
[2,32]. Such an interaction favors the formation of a
many-body singlet phase, which we confirm explicitly
by exact diagonalization (ED), at filling ν ¼ 1=2 and
ν ¼ 2=3. We identify the polarized phases as a composite
Fermi sea (ν ¼ 1=2) [33] and a quasihole conjugate 1=3
Laughlin state (ν ¼ 2=3) [34]. The singlet phase at ν ¼ 1=2
has good overlap with the Haldane-Rezayi phase [35], an
intriguing gapless quantum Hall phase [36–39]. Some
evidence of non-Abelian quantum Hall singlets is found
at ν ¼ 2=3, including the Fibonacci phase [40] and the
interlayer Pfaffian phase [41,42], which are interesting
candidates for topological quantum computing [43].
System.—We consider a monolayer of graphene under a

perpendicular magnetic field, in the quantum Hall regime
[31]. We restrict ourselves to a single valley and assume
that the electron spin is fully polarized. The single-particle
states are given by spinors of the form Ψγ;n;jðzÞ ¼
( − γC−

nϕn−1;jðzÞ; Cþ
n ϕn;jðzÞ)T , where C�

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�δn;0Þ=2

p

are coefficients, z ¼ x − iy are spatial coordinates, and
ϕn;jðzÞ are the (gauge-dependent) nonrelativistic LL wave
functions, characterized by the LL index n ≥ 0 and a
second quantum number j ≥ 0 [31]. In the symmetric
gauge, j specifies the z component of angular momentum,
while in the Landau gauge, it defines momentum along one
direction in the plane. In graphene, a third quantum number
γ ¼ �1 distinguishes between states at positive and neg-
ative energy, Eγ;n ¼ γωc

ffiffiffi
n

p
, where ωc ¼

ffiffiffi
2

p
vF=lB and
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lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
c=eB

p
is the magnetic length. The magnetic field

strength is B, and the Fermi velocity is vF. In the following,
we drop the index γ and assume γ ¼ þ1, without the loss of
generality.
As illustrated in Figs. 1(a) and 1(b), we consider a

coupling between the partially filled n ¼ M level at the
Fermi surface to the empty LL n ¼ M þ 1, described by
(ℏ ¼ 1):

Hcoup ¼
X

j;j0
Ωj;j0 ðtÞc†Mþ1;jcM;j0 þ H:c: ð1Þ

Here, c†M;j and cM;j are the creation and annihilation
operators, respectively, in LLM with the (angular) momen-
tum quantum number j. For simplicity, we assume a plane
wave drive, which acts uniformly on all orbitals:
Ωj;j0 ðtÞ¼2Ωδj;j0 cosðωtÞ, withω the drive frequency and the
Rabi frequencyΩ. Within the rotating frame, transformed by
U¼exp½−ði=2ÞωtPjðc†M;jcM;j−c

†
Mþ1;jcMþ1;jÞ�, a rotating-

wave approximation (RWA) removes the time dependence
from the coupling. The effective single-particle Hamiltonian
then reads

Hsp ¼
X

j

−
δ

2
τðjÞz þ ΩτðjÞx ; ð2Þ

with δ the detuning of the light from the LL resonance,
i.e., δ ¼ EMþ1 − EM − ω. The notation of Eq. (2), using

Pauli operators τðjÞz ≡ jM; jihM; jj − jM þ 1; jihM þ 1; jj
and τðjÞx ≡ jM; jihM þ 1; jj þ jM þ 1; jihM; jj, captures
the analogy to a spin-1=2 system, if the n quantum number
is interpreted as the z component of spin, or to a bilayer
system, if n is associated with a layer index. The first term in
Eq. (2) corresponds to a Zeeman term (in the spin picture),
while the second term mimics interlayer tunneling (in the
bilayer picture). Both terms are independently tunable. The
single-particle eigenstates are dressed LLs at energies
� ~Ω ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδ2=4Þ þ Ω2

p
; see Fig. 1(c). While strong cou-

pling and/or far detuning lead to polarization in the lower
dressed level, bothmanifolds are occupied if the gap between
dressed states becomes small compared to the interaction
strength, e2=ϵlB, i.e., if Ω and δ are sufficiently small.

The transition occurs near Ω ∼ 10−2 (in units of e2=ℏϵlB),
above the threshold required for thermalization in the rotating
frame Hamiltonian, Ω > 10−4, as estimated below.
Applying RWA to the interactions, the many-body

Hamiltonian reads H ¼ Hsp þHint, where

Hint ¼
X

fn;jg
An1;j1;n2;j2
n3;j3;n4;j4

δn1þn2;n3þn4c
†
n1;j1

c†n2;j2cn3;j3cn4;j4 : ð3Þ

The interaction matrix elements An1;j1;n2;j2
n3;j3;n4;j4

are the same as
without light, but the RWA enforces conservation of single-
particle energy, i.e., δn1þn2;n3þn4 .
Results.—Before numerically solving H for small sys-

tems, we gain some intuition by decomposing the inter-
actions into Haldane pseudopotentials [32]. These
pseudopotentials describe the interaction strength Vj of
two particles at fixed relative angular momentum j. In our

case, we distinguish between intralayer processes VðnÞ
j

within LLn and interlayer processes V↑↓;↓↑
j and V↑↓;↑↓

j ,
where the index ↑ð↓Þ shall denote the LLMþ1 (LLM).

Clearly, the difference between VðMþ1Þ
j and VðMÞ

j breaks the
Z2 symmetry usually present in a system of two equivalent
layers. However, as seen from Fig. 2(a), this breaking is
weak, since only potentials at odd j contribute to the intra-
LL scattering of fermions, whereas the strongest n depend-

ence occurs for VðnÞ
0 . A more important difference from

standard bilayer systems stems from the interaction V↑↓;↑↓
j

where scattering particles exchange their LL index, while in
standard bilayers only density-density-type interactions
V↑↓;↓↑
j occur between two layers. Both types of inter-LL

processes can conveniently be accounted for by a single
pseudopotential V inter

j . Therefore, we switch to a singlet or
triplet basis, j�i ∼ j↑↓i � j↓↑i, where the corresponding
pseudopotentials are V�

j ¼ ðV↑↓;↓↑
j � V↑↓;↑↓

j Þ=2. Since
jþi (j−i) is even (odd) under particle exchange, it requires
odd (even) j, and it is sufficient to consider

FIG. 1. (a) A single graphene layer driven by light at Rabi
frequency Ω. (b) LL structure with partial filling and optical
transitions LL0−1 and LL1−2. (c) Formation of dressed states due
to coupling between two LLs.
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FIG. 2. (a) Pseudopotentials for scattering of two particles in
the same graphene LL, n ¼ 0, n ¼ 1, and n ¼ 2. (b) Pseudopo-
tentials for scattering in different LLs, as defined in Eq. (4). If
n ¼ 1 is coupled to n ¼ 2, V inter

j is dominated by the contribution
j ¼ 1.
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V inter
j ¼ ½V↑↓;↓↑

j þ ð−1ÞjV↑↓;↑↓
j �=2: ð4Þ

As seen from Fig. 2(b), these inter-LL pseudopotentials
V inter
j are dominated by j ¼ 0 for a coupling between LL0

and LL1 (denoted LL0-1). In contrast, the repulsion between
singlets at j ¼ 0 is suppressed for a coupling between LL1

and LL2 (denoted LL1-2), and V inter
1 becomes the dominant

contribution. This behavior leads to the general expectation
that coupling LL1-2 favors singlet phases and could give
rise to bilayer quantum Hall phases which are derived from
a hollow-core Hamiltonian. In the following, we will test
this expectation at filling factors ν ¼ 1=2 and ν ¼ 2=3
using ED on a torus [1,44], sphere, and disk [3].
ν ¼ 1=2.—Since the discovery of the FQH effect, under-

standing the physics of a half filled LL has been a
challenge. Early generalizations of the Laughlin wave
functions to systems with spin provide an Abelian spin-
singlet state at ν ¼ 1=2, known as the (331)-Halperin state
[4]. However, in most systems, no quantum Hall plateaux
are observed at ν ¼ 1=2. This fact has been explained by
Halperin, Lee, and Read through a theory which attaches all
magnetic fluxes to composite fermions [33]. As a conse-
quence, these fermions do not feel a magnetic field and may
form a compressible Fermi liquid. In an alternative sce-
nario, the composite fermions undergo BCS pairing which,
due to the Meissner effect, leads to incompressibility
[36,45]. The most prominent paired state is the Moore-
Read Pfaffian state. It involves p-wave pairing and is spin
polarized. In contrast, a spin-singlet state can be obtained
via d-wave pairing and is known as the Haldane-Rezayi
(HR) state [35]. Evidence of non-Abelian excitations has
been discussed for both states [37]. The HR phase has been
identified as a critical phase between strong and weak
pairing [36], providing an example for a gapless FQH
system. Hollow-core two-body interactions, i.e., pseudo-
potentials given by V intra

j ∼ δj;1 and V inter
j ∼ δj;1, yield a

parent Hamiltonian for the HR state.
Accordingly, given the pseudopotential structure of

coupled LLs discussed above, the HR phase becomes a
likely candidate for coupling LL1-2. Indeed, for sufficiently
weak Rabi frequencies, numerical results support this
expectation: In all three geometries, the ground state is a
singlet, having large overlaps with the HR state (see
Table I). We have also evaluated the overlap with the
Jain singlet, which is known to have a large overlap
with the ground state of pseudopotential V0 ≃ V1 [46].
However, since this overlap decreases rapidly with the
system size, we excluded the Jain singlet as a possible
candidate [47]. For the observed singlet phase, the topo-
logical degeneracy on the torus is 4q-fold with ground
states at high-symmetry points K ¼ ð0; 0Þ, K ¼ ð0; N=2Þ,
K ¼ ðN=2; 0Þ, and K ¼ ðN=2; N=2Þ. While this is com-
patible with a (331) phase, no sizable overlap with this
phase is found in any geometry. The HR phase, as obtained
from the hollow-core model, exhibits ground states at the

same high-symmetry K points but has two linearly inde-
pendent ground statesK ¼ ð0; 0Þ. This 5q-fold degeneracy
of the HR phase has been discussed as a consequence of its
criticality [36,37], leading to a zero mode which can be
either occupied or empty. However, the torus degeneracy of
the HR state in the hollow-core model differs from the
number of sectors in the underlying conformal field theory
which is 4q [38], suggesting that the fifth ground state is
not crucial for realizing the HR phase. In light of this point
and based on the strong numerical evidence, the HR
phase appears as the likely description of the observed
singlet phase.
Upon increasing the Rabi frequency, a crossing of energy

levels indicates a second-order phase transition (at Ω ≈
0.025 and δ ¼ 0.02 in units e2=ϵlB, for N ¼ 8 electrons on
the torus). The ground state on the strong-coupling side is
fully polarized in one LL, and the system exhibits Fermi sea
behavior, indicated by ground states at finite angular
momentum on the sphere and at nonzero pseudomomenta
on the torus. A Fermi liquid phase is also found for
coupling LL0-1, where this behavior extends to Ω → 0.
For LL0−1, increasing Ω only rotates the LL polarization

from hPjτ
ðjÞ
z i ¼ N and hPjτ

ðjÞ
x i ¼ 0 for Ω → 0 to

hPjτ
ðjÞ
z i ¼ 0 and hPjτ

ðjÞ
x i ¼ −N for Ω → ∞. This pseu-

dospin rotation is understood on the single-particle level by
assuming that the ground state always remains polarized in
the lower dressed LL.
ν ¼ 2=3.—At filling fractions 1=q with q odd, electrons

can anticorrelate by forming a Laughlin state [34].
Similarly, a Laughlin state of holes provides a good trial
wave function at ν ¼ 1 − 1=q, including ν ¼ 2=3. In a
bilayer at ν ¼ 2=3, various singlet phases compete with the
polarized Laughlin state. Similar to the ν ¼ 1=2 case,
Halperin ðmmnÞ states [4] are possible, including the
(112) state and the (330) state, the latter being two
uncorrelated copies of the 1=3 Laughlin states. Apart from
these Abelian phases, there are also different non-Abelian
phases. It has been argued that tunneling between the layers
can transform the (330) state into a phase supporting

TABLE I. Overlaps of ground states in different geometries, for
weak LL1−2 coupling (Ω ¼ 10−3 and δ ¼ 0.02), with the HR
state (ν ¼ 1=2), and with the interlayer Pfaffian (IP) state
(ν ¼ 2=3). At ν ¼ 2=3, fast decay of the overlap with N suggests
a different phase, possibly a Fibonacci phase (see the discussion);
however, we are not aware of unique trial wave functions to test
the overlaps with this phase.

Sphere Disk Torus

ν ¼ 1=2 0.85 (N ¼ 6Þ 0.97 0.83 ðK ¼ 0Þ
(HR) 0.75 (N ¼ 8Þ (N ¼ 6, L ¼ 24) 0.72 ðK ≠ 0Þ

0.72 (N ¼ 10Þ (N ¼ 8Þ
ν ¼ 2=3 0.99 (N ¼ 4Þ 0.81 (N ¼ 6, L ¼ 18)
(IP) 0.55 (N ¼ 8Þ 0.63 (N ¼ 8, L ¼ 36)

0.39 (N ¼ 12Þ
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Fibonacci anyons [40]. These anyons are defined by simple
fusion rules but still allow for universal quantum computing
[43]. Other non-Abelian phases are obtained via p-type
pairing, either between particles within a layer or between
all particles, leading to intra- and interlayer Pfaffian wave
functions [41,42]. Recently, extensive numerical works
have revealed some of these phases if interactions are
properly modified [57–59]. In particular, studies on the thin
torus [40] as well as exact numerics [58] point towards a
Fibonacci phase if the short-range contribution to the
interlayer interactions is weakened.
In both coupling scenarios LL0-1 and LL1-2, ED on a

torus and sphere gives clear hints for a hole-conjugate
Laughlin phase when the Rabi frequency is sufficiently
strong. If the Laughlin state is formulated in a dressed LL
basis, overlaps with this state reach close to 1; see Figs. 3(c)
and 3(d). As already observed at ν ¼ 1=2, the two coupling
scenarios show different behavior when Ω is decreased.
Again, while for LL0-1 tuning the Rabi frequency only
rotates the spin, a transition into a singlet phase occurs for
LL1-2; see Figs. 3(e) and 3(f). In contrast to ν ¼ 1=2, where
the transition occurs between two gapless phases, we now
observe a transition between gapped phases, and the gap
vanishes only at the critical point; see Fig. 3(b). Also, at
ν ¼ 2=3, the transition does not affect the symmetry of the
ground state [K ¼ ð0; 0Þ on both sides].
The identification of the singlet phase at weak LL1-2

coupling is challenging. On the sphere, where our numerics

extend up to 12 electrons, we find large gaps for N ¼ 8 and
N ¼ 12 but tiny gaps for N ¼ 6 and N ¼ 10, suggesting a
tetraperiodic system behavior. While an intralayer Pfaffian
state, requiring mod ðN; 4Þ ¼ 0, would explain this pattern,
the overlap with this state is zero (for N ¼ 8 on a sphere
and disk). In contrast, significant overlaps are obtained with
the interlayer Pfaffian state (see Table I). However, the
corresponding (3q)-fold torus degeneracy is not seen for
eight or ten electrons. Lacking obvious ground state
degeneracies beyond the q-fold center-of-mass degeneracy,
an Abelian phase such as Jain’s spin-singlet state seems
possible [3,46,60], but only infinitesimal overlap is found.
Given the relative weakness of V inter

0 , we shall also consider
the Fibonacci phase. On the torus, it is characterized by 2q
ground states at K ¼ ð0; 0Þ [58]. While we obtain the
second and the third state at K ¼ ð0; 2Þ and K ¼ ð2; 0Þ on
an isotropic torus, squeezing the torus changes this pattern,
and the lowest two eigenstates indeed become singlets at
K ¼ ð0; 0Þ. Moreover, they have large overlaps with the
corresponding eigenstates of the hollow-core Hamiltonian
(0.76 and 0.81 on an isotropic torus), previously identified
as representatives of the Fibonacci phase [58]. This makes
the Fibonacci phase more likely than other candidate
phases, although a final conclusion is impossible based
on the available numerical results.
Thermalization.—In this work, we have assumed that

the electronic system thermalizes to the ground state in the
rotating frame of the optical drive field. To estimate the
validity of this approximation, we must compare the time
scale for relaxation of the optically excited Landau levels to
the time scale for thermalization of the electronic system
with the lattice. The carrier lifetime of optically excited
Landau levels has contributions from optical relaxation,
phonon relaxation, and Auger scattering into other Landau
levels [61]. In Ref. [62], it was measured at moderate
magnetic fields in epitaxial graphene samples to be roughly
10–20 ps. Although one expects longer lifetimes in higher-
quality graphene samples suitable to observe the FQH
effect, we can use this as an upper bound on the relaxation
rate. In units e2=ϵlB, the inverse of this time scale translates
to roughly 10−3 to 10−4, depending on the magnetic field.
For LL0-1 coupling, the Laughlin state of the driven and the
nondriven regime are adiabatically connected, and one can
adiabatically prepare the system by slowly turning on the
light. In contrast, the singlet states for LL1-2 coupling cannot
be connected to the nondriven regime, which makes the
thermalization problem particularly relevant. For the case of
the ν ¼ 2=3 singlet phase, we can roughly estimate the
thermalization time by the size of the many-body gap in the
spectrum, which, from Fig. 3, is on the order of 10−2. As a
result, there is a large separation of time scales between the
thermalization and carrier relaxation, which allows the
system to remain in the rotating frame ground states before
carrier relaxation. For the gapless phases at ν ¼ 1=2, the
system will still thermalize in the rotating frame; however,

FIG. 3. (a),(b) Energy levels (above the ground state in units of
e2=ϵlB) vs Rabi frequencyΩ, for coupling LL0-1 (a) and LL1-2 (b).
(c),(d) Ground state overlaps with trial wave functions (particle-
hole conjugate 1=3 Laughlin state and a singlet phase obtained
from the hollow-core model). Trial states are constructed in three
different bases: (i) LL basis. All the electrons reside in the lower
LL. (ii) Dressed basis. All electrons reside in lower eigenstates
of Eq. (2), i.e., jji ∝ ðδ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4Ω2
p

ÞjM þ 1; ji þ 2ΩjM; ji.
(iii) Antisymmetric basis. All electrons reside in the singlet state,

i.e., jji ∝ −jM þ 1; ji þ jM; ji. (e),(f) Spin polarization Sα ¼
1=2N

P
jh
P

jτ
ðjÞ
α i of the ground state vsΩ for LL0-1 (e) and LL1-2

(f). Data in all panels (a)–(f) were obtained for eight electrons on
the torus, and δ ¼ 0.02.
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the time scale is more difficult to estimate, as it depends on
the slowest diffusive modes in the system.
A more detailed study of the thermalization dynamics in

this regime is beyond the scope of the present work;
however, it is worth noting that there has been recent
progress in the understanding of thermalization of driven
isolated systems [63–65] and also thermalization of Floquet
systems coupled to a bath [66,67]. It has been pointed out
that electron-phonon interaction and specific Fermi reser-
voirs could lead to thermalization of the system in the
rotating frame, in the long-time steady-state limit [67].
In conclusion, we have considered single-layer graphene

in the FQH regime with an optical field in resonance with a
LL transition. The proposed scheme synthesizes a two-
component FQH system, with the light field playing the
role of tunneling between two layers. For weak tunneling
between LL1 and LL2, a many-body singlet phase is formed
at ν ¼ 1=2 and ν ¼ 2=3. In contrast, strong tunneling and/
or tunneling between LL0 and LL1 leads to a polarized
phase within the lower dressed LL. Our study gives new
impetus towards the experimental realization of multi-
component FQH states and in situ control of the phase
transition using externally applied optical fields and gra-
phene. A similar scheme could also be applied to other 2D
materials with Dirac bands, such as monolayer transition
metal dichalcogenides [68,69]. Conceptually, our approach
is also connected to recent quantum simulations with cold
atoms in which novel topological phases are engineered in
synthetic spatial dimensions which are generated by the
optical coupling of internal states [70–77].
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