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The many body localization (MBL) of spin-1
2
fermions poses a challenging problem. It is known that the

disorder in the charge sector may be insufficient to cause full MBL. Here, we study dynamics of a single
hole in one dimensional t-J model subject to a random magnetic field. We show that strong disorder that
couples only to the spin sector localizes both spin and charge degrees of freedom. Charge localization is
confirmed also for a finite concentration of holes. While we cannot precisely pinpoint the threshold
disorder, we conjecture that there are two distinct transitions. Weaker disorder first causes localization in
the spin sector. Carriers become localized for somewhat stronger disorder, when the spin localization length
is of the order of a single lattice spacing.
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Introduction.—The many-body localization (MBL) has
been demonstrated by various numerical [1–11] and
analytical studies [12,13] carried out mostly for one-
dimensional (1D) systems of spinless particles or equiv-
alent spin models. Among unusual properties of MBL we
only emphasize the logarithmic growth of the entanglement
entropy [14–20], and the subdiffusive transport in the
regime of strong disorder but still below the MBL transition
[21–24].
While MBL is well understood for the simplest

Hamiltonians, it is essential to recognize the class of more
realistic quantum systems which may host this extraordi-
nary phase. A challenging question concerns the dynamics
of disordered two-dimensional interacting systems [25–27]
and 1D Hamiltonians which account for spin [28–33] or
lattice degrees of freedom [34,35]. Numerical studies of the
1D Hubbard model [29] suggest that the disorder strength
needed for localization is very large. Other results [28]
obtained for the same model indicate that strong disorder in
the charge sector localizes only charge carriers, while spin
excitations remain delocalized. Similar studies carried out
for the t-J model [32] suggest that localization of these
carriers should be accompanied by localization of the spin
degrees of freedom, otherwise the charge dynamics is
subdiffusive up to the longest times accessible to the
numerical calculations. Such expectation may be supported
also by the studies in Refs. [30,31].
A general problem concerns the dynamics of a multi-

component system in the presence of disorder which
couples exclusively to one of its subsystems. There is a
quite convincing evidence that all subsystems [32,34] or at
least some of them [28] may be delocalized. However, can
such a system show complete MBL where all degrees of
freedom are localized? In this work we show that it is

indeed possible. We consider a Hamiltonian, which is very
similar to that in Ref. [36], namely, we study the one-
dimensional t-J model. However, the disorder is introduced
not in the charge sector but in the spin sector through a
random magnetic field [37] breaking the SU(2) symmetry
[38–40]. We show that such disorder may localize both
charge and spin degrees of freedom. We speculate also that
there may be two localization transitions, one for spin and
the other for charge degrees of freedom.
Model and method.—In the first part we investigate a 1D

t-J model with a single hole in a random external magnetic
field hi ∈ ½−W;W�,

H¼−t0
X
i;σ

~c†i;σ ~ciþ1;σþc:c:þJ
X
i

SiSiþ1þ
X
i

hiS
z
i ; ð1Þ

where ~ci;σ ¼ ð1 − ni;−σÞci;σ is a projected fermion operator.
We perform calculations for various length sizes L and
open boundary conditions. We perform time evolution
using the Lanczos based technique. For most cases we
use complete Hilbert spaces with a fixed total Sz ¼ 0.
When computing the time evolution of the initially loca-
lized hole we use the limited functional Hilbert space (LFS)
[41–44]. This method enabled calculations on larger chains
up to a maximal size Lmax ¼ 29, described in more detail
in Ref. [45].
We start the time evolution from a Néel background,

with the hole located in the middle of the chain. In addition,
we compute static expectation values of various physical
quantities for eigenstates in the middle of the energy band
using ARnoldi PACKage (ARPACK) [46] Lanczos tech-
niques. We typically take 500 realizations of the disorder.
We measure time in units of ½1=t0� and set t0 ¼ 1. If not
specified otherwise, we set also J ¼ 1.
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In order to investigate the dynamics of the charge carrier
we calculate the hole density

ρi ¼ hψ j1 − ni↑ − ni↓jψiav; ð2Þ

where h iav signifies that expectation values have been
averaged over different random realizations of hi. We
also define the mean square deviation of the hole distri-
bution [47]

σ2 ¼
X
i

i2ρi −
�X

i
iρi

�
2

: ð3Þ

Figure 1(a) shows ρi computed at large time of evolution,
e.g., t ¼ 200. Note that for t ¼ 0, the initial density is
ρi ¼ δi0. At small W ¼ 2 and 3 results are consistent with
the delocalized state of the hole. In contrast, forW ≥ 5, ρi is
compatible with the localized state, ρi ∼ expð−jij=ξcÞ for
i ≠ 0. Extracted charge localization lengths ξc are pre-
sented in Fig. 1(b) for different system sizes L as functions
of W. Functional dependence of ξcðWÞ can be well fitted
using a divergent form as described ξc ¼ A=ðW −WcÞγ .
After L → ∞ scaling we obtain a threshold value Wc

ξc
≃ 5

separating the delocalized regime (for W < Wc
ξc
) from the

localized one. Since the charge dynamics does not saturate
for t ≤ 200, see Fig. 1(d), while ξc increases with time, we
conclude that for t → ∞ one gets Wc

ξc
≳ 5.

While the exponent γ ≃ 1 is consistent with other
results for spinless fermions (or equivalent spin model)
[3,18,48,49], it violates the so-called Harris-Chayes bound
(HCB) γ > 2 [50,51]. However, RG calculations predict a
much larger γ ≈ 3.5 [52,53] consistent with the HCB.
Violation of the HCB may originate from the absence of
a unique length scale [49].
We next follow the hole dynamics via σ2ðtÞ. In Fig. 1(c)

we show short-time results for small values of W ¼ 2 and
3. We observe linear increase of σ2ðtÞ, consistent with the
diffusive spread of the initially localized hole. At large
values of W ¼ 5, 7, and 10 as shown in Fig. 1(d), we
observe a subdiffusive propagation of the hole, σ2ðtÞ ∝ tα

where the exponent α < 1 decreases with increasing W.
Eventually, for very large disorder, α becomes so small that
the latter dependence is indistinguishable from the loga-
rithmic increase of σðtÞ that is compatible with the
proximity to the MBL state [54].
Next, we check whether some particular realizations of

disorder cause localization of the hole. We have thus fitted
σ2ðtÞ ∝ tα independently for each realization of the dis-
order and obtained the distribution of the exponents fðαÞ.
We took special care to perform fits in the time domain free
of finite-size effects. In Fig. 2(a) we show the cumulative
distribution function,

FðαÞ ¼
Z

α

0

dα0fðα0Þ: ð4Þ

We find Fðα → 0Þ ¼ 0 for W < 5 while Fðα→0Þ¼F0>0
for W ¼ 7 and 10, which indicates localization.
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FIG. 1. (a) The hole density ρi at time t ¼ 200 for different
values of W as indicated in the inset. The size of the system was
L ¼ 29; (b) extracted charge localization lengths ξc for different
system sizes vs W. Thin lines represent fits of the form
ξc ¼ A=ðW −W0Þγ . Inset: fit parameters extrapolated towards
1=L ¼ 0; (c) σ2ðtÞ for short times below the localization
transition, W ¼ 2 and 3 showing diffusive behavior. Thin black
dashed straight lines are guides to the eye. Dashed, dot-dashed,
and full lines represent systems sizes L ¼ 21, 25, and 29,
respectively; (d) σðtÞ on logðtÞ scale for W ¼ 5, 7, and 10 for
maximal system size L ¼ 29 using LFS.
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FIG. 2. (a) FðαÞ for different values ofW. The largest available
LFS Hilbert space with L ¼ 29 was used in this case; (b) 1=σ
scaling with the system size L. Inset: Extrapolated values σ0
(circles) with a fit (full line) on the functional form σ0 ∝ 1=
ðW −Wc

σÞγ with Wc
σ ≃ 5 and γ ≃ 0.95; (c) variance of σ for

different system sizes L. Calculations in (b) and (c) were
performed from eigenstates from the middle of the energy
spectrum using complete Hilbert spaces.
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We have also computed σ for the case when jψi in
Eq. (2) are eigenstates of the Hamiltonian taken from the
middle of the energy spectrum. In Fig. 2(b) we show 1=L
scaling of 1=σ. We can clearly see the transition from
delocalized states where 1=σðL → ∞Þ → 0 for W ≲ 4.0
towards localized ones with 1=σðL → ∞Þ → 1=σ0 > 0 for
W ≳ 5.0. In the inset we show scaling of extrapolated
values σ0 with W together with a fit σ0 ∝ 1=ðW −Wc

σÞγ ,
which allows one to locate the divergence of σ0 atWc

σ ≃ 5.
Another signature of the MBL transition is observed in
variance (with respect to different realizations of disorder)
of Δσ=L, presented in Fig. 2(c) that shows a peak around
W ≃ 5. Exactly at the transition we observe a linear scaling
of Δσ with L and, consequently, ΔσðWÞ=L becomes
narrower as the system size increases.
The hole becomes localized at Wc ≃ 5 even though it is

not directly subject to a random potential. We expect the
localization of spin dynamics with increasing W in the
thermodynamic limit at the same value of Ws ∼ 3.7� 0.5
as in the undoped case [3,55,56], since a single hole
cannot influence the transition of an infinite chain. We
test this idea by computing the entanglement entropy S ¼
−
P

λwλ logwλ, where wλ are eigenvalues of the reduced
density matrix of a subsystem. Since we work with odd
system sizes, we have defined the reduced density matrix
over a subsystem of length La ¼ ðLþ 1Þ=2. While the
subsystem contains spin as well as charge degrees of
freedom, it is important to stress that there are only La
different states in the subsystem for the hole, in contrast,
there is exponentially more spin degrees of freedom. In the
thermodynamic limit the entanglement entropy thus mea-
sures predominantly the entropy of the spin sector.
The time evolution of the entanglement entropy shows a

slow growth for W ≳ 5, i.e., SðtÞ=L ∼ logðtÞ, as displayed
in Fig. 3(a), which is consistent with the MBL state [14,17].
In contrast, for small W ¼ 1 and 2, S=La on a time scale
τ ∼ 10–50 approach a constant slightly below log(2), which
represents the infinite-T limit of an undoped spin-1

2
chain in

a thermal state. The transition between the delocalized to
localized regime can be well captured as well by following
the size dependence of the entanglement entropy S=La [3].
In Fig. 3(b) we show S=La vs W of the half-chain system
obtained from eigenstates from the middle of the energy
spectrum for different system sizes. We observe a crossover
aroundWs ≃ 4 as the system crosses over from the volume
law, characteristic for ergodic and delocalized systems,
towards the area law that signals localization as the
subsystem size exceeds the localization length. In addition,
we show in Fig. 3(c) the variance of the entanglement
entropy ΔS=La that shows a broad peak centered
around Ws ≃ 4.
To gain additional insight into the localized phase

we trace out the spin degrees of freedom and obtain a
reduced density matrix for the charge carrier. Consequently,
the resulting von Neumann entropy, Sh, quantifies

entanglement between the spin and the charge degrees
of freedom. Deep in the MBL phase the charge and spin
excitations are weakly entangled [see Fig. 3(d)]. Note also
that the variance ΔSh peaks at larger value of W than ΔS,
see Fig. 3(c).
Our results support MBL at large values of W ≳ 5 in the

charge as well as in the spin sector. While MBL in the spin
sector is mostly expected based on many previous works
[3,14,55,56], the same is not true for the charge sector. An
intuitive picture for the localization of the hole is obtained
in the extreme anisotropic limit of the exchange interaction,
i.e., in the limit when J ¼ Jz and even at J ¼ 0. Then, the
system evolves within a space spanned by the states, jψ ii ¼
js1; s2;…; si−1; 0i; siþ1; sLi with a frozen sequence (but not
position) of L − 1 spins s1;…; sL. As a result, the dynamics
maps onto a problem of a single particle in a random on-site
potential ϵi, where

ϵi ¼
X
j≠i

hjsj þ Jz
X

j≠i−1;i
sjsjþ1; ð5Þ

which is Anderson localized at W > 0. As an example we
present data for S=LaðtÞ for J ¼ 0 in Fig. 3(a) displaying
rapid saturation, characteristic for Anderson’s localization.
The picture of frozen Ising-like spins is oversimplified in
the presence of many-body interactions. It does not account
for slow (logarithmic in time) but non-negligible spin
dynamics visible in Fig. 3(a) for J ≠ 0. Nevertheless, this
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FIG. 3. (a) S=La for various values of W. Results were
computed using a complete basis on L ¼ 13 sites chain. Time
evolution started from a Néel state with hole located in the middle
of the chain. Thin black line represents Anderson’s localized state
for W ¼ 7 and J ¼ 0; (b) S=La computed from eigenstates from
the middle of the energy band. The same holds for (c) and (d).
Results are shown for various chain lengths, L ¼ 9, 11, 13, and
15; (c) the variance of S and Sh (symbols connected with dashed
and full lines, respectively) vsW; (d) hole entropy Sh for different
system sizes L.
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result brings us to the hypothesis that the localization of the
hole must be caused by the localization of spin degrees of
freedom. We discuss this problem in more detail at the end
of the Letter as well as in Ref. [45].
Finite doping.—The essential question is whether the

randomness in the spin sector may induce the full MBL
also for nonzero concentration of holes. It is very demand-
ing to carry out reliable finite-size scaling for an arbitrary
concentration of carriers. A nontrivial but still numerically
feasible case concerns the system with equal numbers
(L=3) of holes, spin-up, and spin-down electrons.
Following Ref. [57] we investigate the charge imbalance
P. We study time evolution of initial states, such that every
third lattice site (belonging to sublattice A) is occupied by
holes, whereas electrons are randomly distributed on the
other sites which form the sublattice B. Then, P reads

P ¼ 3

L

�X
i∈A

ρi −
1

2

X
i∈B

ρi

�
: ð6Þ

The factor 1
2
is the ratio of the number of sites in both

sublattices. Initially all (L=3) holes occupy the sublattice A,
hence Pðt ¼ 0Þ ¼ 1. Figure 4(b) shows PðtÞ, where time
propagation has been carried out using the full Hilbert
space. Charge localization means that the system retains
information on the initial distribution of holes for arbitrarily
long times, i.e., Pðt → ∞Þ > 0. This is clearly observed in
Fig. 4(a), where at W ≳ 10 even after finite size analysis
(Ref. [45]) PðtÞ displays slow logarithmic decay, character-
istic for MBL; e.g., see Ref. [54]. In contrast, in the
delocalized phase (W ≲ 5) Pðt → ∞Þ → 0 while it starts to
substantially deviate from 0 for W ≳ 7, Fig. 4(b). In the

latter figure we show also results for smaller (more realistic)
exchange interaction J ¼ 0.4, when the charge localization
is even more evident.
It is interesting that charge disorder is insufficient to

induce full MBL [36], whereas random magnetic field
can localize all degrees of freedom. Most probably,
this difference originates from a specific structure of the
Hilbert space which excludes double occupancy. At each
site, the space is spanned by only three states jαii with
α ¼ 0;↑;↓. The disorder in the charge and spin sectors
enter the Hamiltonian, respectively, through terms H0

c;s ¼P
ihiðj↑iih↑ij � j↓iih↓ijÞ, with random hi. The basis

states are eigenstates of H0
c;s, i.e., H0

c;sjαii ¼ Ec;sðαÞjαii.
However, for the charge disorder one finds degenerate
eigenvalues Ecð↑Þ ¼ Ecð↓Þ, whereas for spin disorder the
spectrum EsðαÞ is nondegenerate [see Fig. 4(c)]. In the case
of spin disorder, the change of energy due to arbitrary
rearrangement of spins or charges, jαiα0jihα0iαjjwith α ≠ α0,
is of the order of W. Therefore, all degrees of freedom
become localized for sufficiently strong disorder. However,
due to the degenerate spectrum obtained for charge dis-
order, the change of energy due to spin flip j↑i↓jih↓i↑jj þ
H:c: is independent of W and magnetic excitations may
remain delocalized.
In summary, we have shown that a system with coupled

charge and spin degrees of freedom may undergo a
complete MBL transition due to disorder that couples only
to the spin sector. Here, the complete MBL is understood as
a phase where both charge and spin excitations are
localized. Support for this conclusion comes from numeri-
cal studies of the t-J model in the low-doping regime and
with random magnetic field. We have carried out comple-
mentary studies of several quantities which consistently
show for J ¼ 1 that the spin and charge degrees of freedom
become localized when the magnitude of the random field
exceeds Ws ≃ 4 and Wc ≃ 5, respectively. While the main
purpose of this work is just to show existence of the
complete MBL, we conclude that our results may be
consistent with two separate transitions (or crossovers) at
Ws and Wc > Ws. The charge degrees are not localized
until the spin localization length is of the order of a single
lattice spacing. However, due to the proximity of both
transitions, this conjecture should be verified by additional
numerical studies. While thorough numerical studies have
been carried out for vanishing concentration of holes, we
have shown that for sufficiently strong disorder, full MBL
arises also for nonzero concentration of carriers.
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