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We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two
and three dimensions (d ¼ 2, 3). We show that in both cases nontrivial topology is manifested by the
presence of the (d − 2)-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion
systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of
filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also
present. The theory is extended to strongly interacting systems through the explicit construction of
microscopic models having robust (d − 2)-dimensional edge states.
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Introduction.—A symmetry protected topological state
(SPT) is a gapped quantum state that cannot be continu-
ously deformed into a product state of local orbitals without
symmetry breaking [1–3]. The SPT is known to have
gapless boundary states in one lower dimension [4], i.e., the
(d − 1)-dimensional edge, such as the spin-1=2 excitations
at the end of a Haldane chain [5] or the Dirac surface states
at the surface of a topological insulator [6,7]. The gapless
states are protected by the symmetries on the (d − 1)-
dimensional edge, and when the symmetry is a spatial
symmetry, they appear only on the boundary that is
invariant under the symmetry operation [8–11].
Very recently, the possibility of having a gapped (d − 1)-

dimensional edge but a gapless (d − 2)-dimensional edge
has been discussed [12–15]. In Ref. [12], it was shown that,
in a 2D spinless single-particle (i.e., no spin-orbit coupling)
system that has anticommuting mirror planes, all four side
edges can be gapped without symmetry breaking on an
open square, but there are four modes localized at the four
corners (0D edge) protected by mirror symmetries. Here we
first extend the theory of 0D-edge states to spin-1=2
fermion systems without mirror symmetries but with
fourfold rotation symmetry and time-reversal symmetry.
We point out that the presence of 0D-edge states can be
understood as the result of a mismatch between the
locations of the centers of the Wannier states and those
of atoms. Then we generalize the theory to 3D and define a
new topological invariant by classifying the “spectral flow”
of the Wannier centers between the kz ¼ 0 and the kz ¼ π
slices in the Brillouin zone. When this invariant is non-
trivial, there are four helical edge modes on the otherwise
gapped side surfaces of the 3D system. We further show
that, when space inversion is also present, there is a Fu-
Kane-like formula [16] relating this invariant to certain
combinations of rotation and inversion eigenvalues of the

filled bands at high-symmetry crystal momenta. Finally, we
generalize the theory to strongly interacting systems, by
constructing microscopic models of boson and fermion
SPT states that have (d − 2)-dimensional edge states for
d ¼ 2, 3 using coupled wire construction. We remark that
these edge states, protected by C4 and some local symmetry
such as time reversal, are not pinned to the corners or
hinges of the system and can even appear in geometries
having smooth side surfaces.
Mismatch between the atom sites and the Wannier

centers.—Wannier functions for the filled bands can be
constructed for all 2D gapped insulators that have a zero
Chern number [17]. When symmetries are involved (time
reversal and/or spatial), the set of Wannier functions may or
may not form a representation of the symmetry group [18].
If they do, then we call these Wannier functions “sym-
metric.” If a set of symmetric Wannier functions cannot be
found for all filled bands, we know that the system cannot
be adiabatically deformed into an atomic insulator: This is
considered a generalized definition of topologically non-
trivial insulators [19,20], since atomic orbitals automati-
cally form a set of symmetric wave functions. Atomic
insulators are usually considered trivial. Nevertheless, we
realize that even they can also be somewhat nontrivial if
there is a mismatch between the Wannier centers and the
atomic positions, as shown in the left panel in Fig. 1(a). A
Wannier center (WC) can be understood as the middle of
the Wannier function (but see Ref. [21] for a rigorous
definition), and, if the Wannier functions are symmetric,
their centers are also symmetric. When the mismatch
happens, it means that, while the insulator can be deformed
into some atomic insulator, it would not be made by the
atoms forming the lattice. The presence of 0D-edge states
of the system put on an open disk is the manifestation of the
“mismatch.”
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To be specific, let us consider a square lattice model

H ¼ ð1 − cos kx − cos kyÞτ0σzs0 þ sin kxτ0σxsx

þ sin kyτ0σxsy þ Δðcos kx − cos kyÞτyσys0; ð1Þ

in which all the atomic orbitals are put on the lattice sites.
Here τi and σi (i ¼ 0; x; y; z) are Pauli matrices represent-
ing the orbital degrees of freedom, and si (i ¼ 0; x; y; z)
representing the spin. This model can be thought of as two
copies of 2D topological insulator plus a mixing term with
Δ as the coefficient; and it has time-reversal symmetry
T ¼ −isyK and a rotation symmetry C4 ¼ τze−iπsz=4. The
system put on a torus is fully gapped, because the four
terms in Eq. (1) anticommute with each other and their
coefficients do not vanish at the same time.
As shown in Ref. [21], whatever value Δ takes, the

insulator is equivalent to an atomic one, and its WCs are
located at the plaquette centers. We have explicitly con-
structed a set of symmetric Wannier functions and prove
that, protected by the time-reversal and C4 symmetries, the
Wannier centers stay invariant under any gauge trans-
formation that keeps the Wannier functions symmetric.

This model hence realizes the mismatch between the WCs
at plaquette centers and the atomic positions at sites.
Now we cut along the dotted lines in the left panel in

Fig. 1(a) and turn the 2D torus into an open square. Since
this cut preserves C4 symmetries, the states centered at the
plaquette center will be equally divided into four quarters,
so that each quarter carries one extra electron on top of
some even integer filling. Because of T, this means that a
pair (Kramers’s pair) of zero modes are located near each of
the four corners of the square. One may observe that, in the
absence of particle-hole symmetry (which is an accidental
symmetry of the model), the modes can be moved away
from zero and pushed into the bulk states, but we argue that,
even when this happens, the corners are still nontrivial in
the following sense. The total eight modes (two near each
corner) come from both the conduction and the valence
bands, each having ðNband − νÞL2 − 4 and νL2 − 4 elec-
trons, respectively, where Nband ∈ even and ν ∈ even are
the total number of bands and the filling number, respec-
tively, and L the length of the square [Fig. 1(b)]. No matter
where the Fermi energy is, a gapped ground state must have
4 mod 8 electrons on an even-by-even lattice, so that each
corner has exactly one (or minus one) extra electron on top
of the filling of the bulk. This is in sharp contrast with the
systems having trivial corner states, whose energy levels
are plotted in Fig. 1(c). In that case, the in-gap states can be
pushed into the conduction bulk, and there is no extra
charge at each corner. In Figs. 1(d) and 1(e), we plot the
charge density at μ ¼ μ1 in real space and plot the extra
electric charge within a small area near the corner as a
function of radius in the Slater-product many-body
ground state.
To see how the odd parity of the corner charge is

protected by C4, we contrast the above scenario with the
one having a nematic perturbation breaking C4 down to C2,
so that the Wannier centers are shifted to the positions
shown in the right panel in Fig. 1(a). When the system is cut
along the dotted lines, the quarter has inside it an integer
number of Kramers’ pairs, and the degeneracy at each
corner is absent.
1D helical state and Z2 Wannier center flow.—A natural

generalization of the 0D state in 2D is the 1D-edge state in
3D, where both the 3D bulk and 2D side surfaces are
insulating, as shown in Fig. 2(c). Our construction of this
state is also based on the WC picture. Assuming the 3D
system has T and C4 symmetries, we can take a C4-
invariant tetragonal cell and transform the Hamiltonian
along the z direction to momentum space. Each slice with
fixed kz can be thought of as a 2D system, wherein the
kz ¼ 0; π slices are time reversal andC4 invariant, while the
others are only C4 invariant. Consider an insulator that has
four filled bands, or four WCs for each kz slice. Because of
C4, the four WCs are related to each other by fourfold
rotations; and due to T, at kz ¼ 0 or kz ¼ π, two WCs that
form a Kramers’s pair must coincide. Therefore, at kz ¼ 0
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FIG. 1. Nontrivial 0D-edge modes of a 2D fermion. In (a), we
sketch the mismatch between the atom sites and the WCs in the
presence (left panel) and the absence (right panel) of C4, where
the atom sites are represented by the block circles and the WCs
are represented by the colored orbitals. In (b) and (c), level
counting for systems with nontrivial and with trivial 0D-edge
state is shown, respectively. In (d), the numerical calculated
density profile of the 2D model with a finite size of 50 × 50 is
plotted, where the Fermi level is set at μ1. The four bright regions
in (d) show the additional charges located at the corners. To count
the number of additional charges around a corner, we plot the
integral of the density deviation from the filling (ν ¼ 4) in (e).
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and kz ¼ π, there are only three possible configurations for
the four WC: all four at 1a, all four at 1b, and two at each
2c Wyckoff position. Wyckoff positions are points in a
lattice that are invariant under a subgroup of the lattice
space group. For a square lattice in a Wigner-Seitz unit cell,
1a and 1b are the center and the corner invariant under C4,
2c are the middles of the edges invariant under C2, and 4d
are generic points invariant under identity (the trivial
subgroup). If the configurations at kz ¼ 0 and at kz ¼ π
are different, the evolution of the WC between the two
slices forms a “Z2 flow,” a robust topological structure
revealing that the 3D insulator is not an atomic one. Out of
several different combinations of the configurations at kz ¼
0 and kz ¼ π, there are two topologically distinct Z2 flows,
where the four WCs flow from 1b to 1a and from 1b to 2c
[solid yellow and dashed green lines in Fig. 2(a)], respec-
tively. The latterZ2 flow can be shown equivalent to a weak
topological index (Ref. [21]), and we from now on focus on
the firstZ2 flow from 1b to 1a. Whether this flow is present
or not gives us a new Z2 invariant, and its edge manifes-
tation is the existence of 1D helical edge modes on the side
surface of a bulk sample. (For a more rigorous definition
and classification of theWC flow for an arbitrary number of
filled bands, see Ref. [21].)
To see this bulk-edge correspondence, we cut the bulk

along both the x and y directions, keeping the periodic
boundary condition along z. From a top-down perspective,
a corner of the sample takes the shape of the dotted lines
shown in Fig. 2(a). One can see that, at the corner, the
boundary cuts through exactly one (or three) line(s) in
the WC flow, corresponding to one helical mode along the
hinge between the two open surfaces. To make the picture
more concrete, we consider the following 3D model, which
is a simple extension of the 2D model in Eq. (1):

H ¼
�
2 −

X
i

cos ki

�
τ0σzs0 þ

X
i

sin kiτ0σxsi

þ Δðcos kx − cos kyÞτyσys0: ð2Þ

The kz ¼ 0 slice is equivalent with the 2D model in Eq. (1),
thus having four charges locating at the plaquette center.
The kz ¼ π slice is, however, a 2D atomic insulator with
four charges locating at the lattice site. The mismatch
between the WCs at kz ¼ 0 and kz ¼ π slices means that
the Z2 flow exists. To confirm the Z2 flow, we also choose
a smooth gauge for all the kz slices from kz ¼ 0 to kz ¼ π
and plot the WC flow explicitly, which indeed gives the Z2

flow, shown in Ref. [21]. The 1D helical state is also
confirmed by a numerical calculation of the band structure
of a finite tetragonal cylinder, as plotted in Fig. 2(b). For
this particular model, the helical edge states can be viewed
from another perspective. The edge between the two open
surfaces can be considered as the domain wall between
them. On each surface there is a mass gap, and the rotation
symmetry in this model enforces the two masses to be
opposite, so that at the domain wall there is a helical mode
[11] [see Fig. 2(c) for a schematic, and see Ref. [21] for
more details].
Symmetry indicators for the Z2 invariant.—To see if a

given insulator has 1D helical edge modes on the side
surface, one needs to calculate the evolution of the WCs as
a function of kz, which in turn requires finding symmetric,
smooth, and periodic Bloch wave functions for all bands at
each kz slice as is done for our model Hamiltonian. This is
practically impossible in real materials. Now we show that,
in the presence of additional inversion symmetry, this Z2

invariant can be determined by the rotation and inversion
eigenvalues at all high-symmetry momenta, simplifying the
diagnosis. We call this method a “Fu-Kane-like formula,”
likening it to the Fu-Kane formula for time-reversal
topological insulators [16], where inversion is not required
to protect the nontrivial topology but when present greatly
simplifies the calculation.
This formula is derived based on the new theory of

symmetry indicators [19,20]: Given any insulator, a full set
of eigenvalues of the space group symmetry operators for
filled bands at all high-symmetry points generates a series
of indicators. They tell us if this set is consistent with any
atomic insulator, and, if yes, the theory further gives where
the atomic orbitals are located. Our goal is to find such an
indicator that is equivalent to the Z2 invariant for the WC
flow. Following the WC flow picture, we require (i) at
kz ¼ 0 and kz ¼ π, the eigenvalues of C4, C2 ¼ C2

4 and P
are consistent with atomic insulators; (ii) there is no surface
state on the side surfaces; and (iii) comparing the two slices
at kz ¼ 0 and kz ¼ π, the numbers of atomic orbitals at 1a
and at 1b change by �4 and ∓ 4, respectively. For a
concrete example, let us consider space group P4=m,
whose indicators form a group Z2 × Z4 × Z8 [19], so that
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FIG. 2. Nontrivial 1D helical modes of a 3D insulator. In (a), we
plot the two generators of nontrivialZ2 flows from the kz ¼ 0 slice
to the kz ¼ π slice, where the lattice site (1a), the plaquette center
(1b), and the edge midpoint (2c) are represented by a black
planchet, hollow circle, and gray planchet, respectively. In (b), the
numerically calculated helical modes of our 3D model on a
tetragonal cylinder geometry are plotted. The length along the x
and y directions is 50. In (c), we sketch the domain wall between
surfaces of oppositemasses, enforced by theC4 rotation symmetry.
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the insulator according to its C4 and P eigenvalues can be
denoted by ðmnlÞ (m ¼ 0, 1, n ¼ 0, 1, 2, 3, l ¼ 0; 1;…; 7),
and an insulator with a nonzero indicator cannot be
adiabatically deformed into an atomic insulator. Using
the three criteria above, we find that the Z2 flow is
nontrivial only if ðmnlÞ ¼ ð004Þ. We have found the
explicit formulas to calculate these indicators directly from
the symmetry eigenvalues, which can be applied to all
space groups having both C4 and P. (See Ref. [21] for the
results, and find a MATLAB script therein for an automated
diagnosis for materials in these space groups.)
Extension to strongly interacting SPT.—In the above we

have established the theory of (d − 2)-dimensional edge
modes for free fermions through the WC picture. Since WC
is a single-particle object, the same picture does not apply
for strongly interacting bosons or fermions. Here we
rebuild a 3D free fermion model with robust 1D helical
edge modes using coupled wire construction [24–28], a
method that can be easily extended to strongly interacting
SPT. These SPT can either be bosonic [29] or fermionic and
are, in general, protected by spatial symmetry [30] plus
some internal symmetry [31].
Consider an arrangement of 1D wires shown in the top

down view in Fig. 3(a), each of which represents a helical
mode. Because of the fermion doubling theorem, each wire
alone cannot be physically realized in 1D, but an even
number of these wires can be realized as a 1D wire fine-
tuned to a critical point. In our model, four wires make a
physical, critical 1D wire. For concreteness, we assume that
under C4 rotation the four wires inside cyclically permute.
Then we couple the wires in the following way: The four
wires, in the top down view, which share a plaquette are
coupled diagonally, i.e., 1 coupled to 3 and 2 to 4. For a 3D
torus, these couplings (solid red lines) make the coupled
wire system an insulator. For a cylinder geometry open in
the x and y directions, however, there are “dangling helical
wires” on the side surfaces, which can again be gapped by

turning on a dimerizing coupling (dotted lines). But one
soon discovers that, as long as C4 is preserved, there are
always four unpaired wires on the side surface (represented
by green dots), which are in fact the same 1D helical edge
mode protected by C4 and T studied above.
This construction can be easily extended to strongly

interacting SPT. One simply replaces each helical wire with
a (d − 2)-dimensional edge of a (d − 1)-dimensional SPT
protected by some local symmetry. For example, each
“wire” can be a 0D spin 1=2, which is the edge of a 1D
Haldane chain protected by SO(3) symmetry. In that case,
the resultant construction in Fig. 3(a) is nothing but an
Affleck-Kennedy-Lieb-Tasaki (AKLT)-like state [32,33]
formed by S ¼ 2 spins, but, unlike previously considered
AKLT states in 2D, it has a gapped 1D edge but four 0D
gapless spin-1=2 excitations localized at the four corners in
an open square. We can also replace each wire by the edge
of a Levin-Gu state [34], protected by a Z2 local symmetry,
and then the construction in Fig. 3(a) is a 3D bosonic SPT
with 1D gapless modes at four corners. Notice that, in these
boson examples, time-reversal symmetry is not necessary.
Similar construction can be used to obtain SPT states
protected by both the local symmetries [being T, SO(3), or
Z2] and C4-rotation symmetry.
Discussion.—It is important to note that, while in

examples studied so far the (d − 2)-dimensional edge
modes sit at the corners or hinges in the disk or cylinder
geometry, it is not always the case. In the model shown in
Fig. 3(a), the edge modes are pinned to the corners by the
mirror symmetries (dotted lines), and breaking these mirror
planes in the bulk or on the surface causes the edge modes
to move away. In the example shown in Fig. 3(b), we break
the mirror symmetry of the construction on the surface, so
that the dangling wires move from the corners to some
generic points on the side. As long as C4 is present, the
(d − 2)-dimensional edge modes are stable yet not pinned to
corners or hinges in the absenceofmirror symmetries. In fact,
they still appear even if the whole side surface is smooth
without hinges at all. We also emphasize that, while these
edgemodes are protected byC4-rotation symmetry, breaking
the symmetry perturbatively in the bulk or on the boundary
does not, in general, gap out themodes, because time reversal
alone is sufficient to protect 1D helical edgemodes. The only
way of gapping the modes is to annihilate them in pairs, and
this means large C4 breaking either in the bulk or on the
boundary. Similar discussions may be extended to systems
with twofold, threefold, and sixfold rotations.
Experimentally, the four helical edge modes of a 3D

electronic insulator contribute a quantized conductance of
4e2=h that may be measured in electric transport [7]. Also,
the (d − 2)-dimensional edge modes may be detected by
local probes such as scanning tunneling microscopy, either
on a bulk sample or at the step edge of a thin film.
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