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Grain boundary (GB) migration controls many forms of microstructural evolution in polycrystalline
materials. Recent theory, simulations, and experiments demonstrate that GB migration is controlled by the
motion of discrete line defects or disconnections. We present a continuum equation of motion for grain
boundary derived from the underlying discrete disconnection mechanism. We also present an equation of
motion for the junctions where multiple grain boundaries meet—as is always the case in a polycrystal. The
resulting equation of motion naturally exhibits junction drag—a widely observed phenomena in junction

dynamics in solids and liquids.
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A polycrystalline material may be thought of as an
ensemble of crystalline grains or, on the mesoscale as a
network of grain boundaries (GBs)—GBs are the interfaces
between these differently oriented crystalline grains.
Because this GB network has a large impact on a wide
range of material properties (e.g., strength, toughness,
corrosion resistance, electrical conductivity [1]), its evolution
is important for engineering materials. The temporal
evolution of the GB network occurs through GB migration.
Since GBs are interfaces between crystals, the microscopic
mechanisms by which they move are intrinsically different
from other classes of interfaces (e.g., solid-liquid interfaces,
surfactant interfaces in micelles, biological cell membranes).
The microscopic mechanism of GB migration is associated
with the motion of topological line defects (disconnections)
in the interface that result from the symmetry of the bounding
crystals. This crystallography dependence has a profound
effect on GB migration; e.g., GB migration may be driven by
stresses, in addition to such effects as capillarity that describe
the motion of other interfaces. While the motion of other
classes of interfaces (in noncrystalline matters) has been
widely studied on the mesoscale, a mesoscale description of
GB motion (based on its underlying microscopic mecha-
nism) is missing. In this Letter, we propose a continuum
equation of motion for GBs based on the underlying micro-
scopic mechanisms and integrates the effects of a diverse
range of thermodynamic driving forces.

Experimental evidence has been accumulating that GBs
move in response to shear stresses [2,3] (in addition to other
driving forces [4-6]); we refer to this phenomenon generi-
cally as shear-coupled GB migration. More recent theo-
retical, simulation [7-11], and experimental work [3] has
shown that the GB velocity is proportional to shear stress
and switches sign upon reversal of the sense of the shear.
There is also a growing body of evidence that shear-
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coupled GB migration occurs through the motion of line
defects [12,13] which may generally be referred to as
disconnections [14—16]. Disconnections are characterized
by both step (step height H) and dislocation character
(Burgers vector b) [16]. The possible (b, H) pairs for a
disconnection are determined solely by the GB crystallog-
raphy; more specifically, for a coincidence-site-lattice GB
b’s are translation vectors of the bicrystal lattice [17] and
the set of possible H’s are crystallographically determined
for each b [14]. While stresses couple to the Burgers vector
to move the disconnections, disconnections may also move
in response to driving forces that couple to the step height
(akin to step flow on a growing surface).

Figure 1 shows a GB composed of flat sections and
disconnections. The motion of disconnections in the same
direction translates the GB while motion of disconnections
towards (and annihilating with) each other changes the GB
curvature. Hence, both GB migration and change in GB
shape can be characterized by disconnection motion. We
assume that disconnection motion is overdamped such that
the velocity is v, = M f,;, where f, is the force on the
disconnection and M is its mobility (the constant relating
driving force to velocity which may, in general, be affected
by local bonding, GB structure, solute segregation, point
defects, etc.).

FIG. 1. A GB with disconnections (blue curve) and its
continuum representation y = h(x, t) (red curve). The GB veloc-
ity v (in the y direction) results from disconnection glide
characterized by (b, H) and (—b, —H) in the x direction.
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In this model we consider GB migration via the motion
of a single disconnection type that glides along a GB (its
Burgers vector is in the GB plane; see Fig. 1). Although
other disconnections may exist (with components of b
perpendicular to the GB plane), the motion of these tend to
be slow and require diffusion (relatively unimportant for
GB migration). Although, at high temperature disconnec-
tions of multiple types may be activated, MD simulations
[7] show that shear coupling tends to be dominated by a
single disconnection type except at very high temperature
(close to the melting point in many cases) for most GBs.

The driving force on a disconnection has two terms
fa=f.+ fp- The first term is associated with the cou-
pling of the disconnection Burgers vector to the stress &
(i.e., Peach-Koehler force): f, = (6 - b x &) - §, where & is
the disconnection line direction and g is the glide direction
of the disconnection [18]. The second term couples the
motion of the disconnection step to the energy reduction in
the system. This term may be associated with the energy
jump across the GB W, e.g., associated with dislocation
density (i.e., the driving force for primary recystallization),
elastic energy (from elastic anisotropy), or artificial energy
density differences (as used in many atomistic simulations
of GB migration [19]).

On the continuum level, a GB may be modeled as a
smooth curve (surface), as shown in Fig. 1. We assume that
the GB “terraces” are parallel to the x direction, the GB
shape is y = h(x, t), and the disconnection density is small
(|he] < 1; h, is the signed disconnection density). The
driving force for disconnection motion associated with
stress is f, = (o; + 7)bh,/|h,|, where o; is the stress from
all the disconnections in the system and 7 is the applied
stress. If all the disconnections lie on a single GB, the
stress due to the elastic interaction between disconnections
is [18]
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where K = u/[27(1 —v)], pu is the shear modulus, v is the
Poisson ratio, and f = b/H is the shear-coupling factor
[7,20]. The stress field o; due to the long-range elastic
interaction of disconnections that locate on multiple GBs in
a two-dimensional microstructure can also be calculated
from the stress field of dislocations [18] (see Supplemental
Material [21]).

The bicrystal driving force fp is determined from
the variation of the energy of the bicrystal (with GB

length L) E = [F(Wh+y\/1+ h?)dx, with respect to
the displacement of the disconnection, u. Using 6E/éu =
(H/L)SE/5h, we have

o= (=50) (H3i) = vy @

where |h,| < 1. This expression explicitly accounts for the
GB curvature (Gibbs-Thomson effect) with GB energy y
and the energy jump across the GB V.

We relate the evolution of the GB profile i(x, ) to the
disconnection velocity as h, + v h, = 0. This implies that,
if a GB is initially flat (h, = 0), it will always remain flat.
Hence, neither an applied stress 7 nor an energy jump ¥
will be able to move an initially flat GB, despite simulation
and experimental observations to the contrary [3,7]. This
would be true at T = O for a faceted GB; however, at finite
T there is a thermal equilibrium disconnection concen-
tration at any finite driving force. Since disconnections
form in pairs (or as loops in three dimensions), we can write
the equilibrium disconnection concentration (in analogy
to thermal equilibrium of kinks on a dislocation [18]) as
c.(T) = (1/a)eFe/%sT) where F, is half the disconnec-
tion pair formation energy, a is an atomic spacing and kp is
the Boltzmann constant. We note that it is this thermal
density of disconnections that gives rise to GB rough-
ening [22].

Lateral motion of these thermal disconnections under
finite driving force leads to the motion of a nominally flat
GB. Inclusion of this effect in the equation of GB motion
yields h, + vgh, = 2c,Hvgy(h./|h|). Collecting all of
these terms leads to the following continuum equation of
GB motion:

hy = =Myl(0; + )b + WH — yhoH)(|h| + B). (3)

where B = 2Hc,(T). The velocity of each GB segment has
both local terms (second and third terms in the square
brackets) and a nonlocal term (associated with the spatial
distribution of disconnections throughout the microstruc-
ture as embodied in o). See the Supplemental Material [21]
for the detailed derivation.

We now apply Eq. (3) to numerically solve two GB
dynamics problems using a finite-difference approach. The
materials constants are chosen to represent a 5 [100] (310)
36.87° symmetric tilt GB in aluminum (see Supplemental
Material [21] for details of the numerical method and
choice of parameters). The first application is to the
capillarity-driven flattening of a sinusoidally perturbed
GB profile; there is no applied stress (r = 0) or energy
jump across the GB (¥ = 0).

Figure 2(a) shows that an initially perturbed GB profile
evolves to a flat profile even at 7 = 0 (B = 0). Although
flattening is expected based on motion by mean curvature
and the capillary term is indeed included in Eq. (3), the
dominant driving force in our simulations is the long-range
elastic interaction between disconnections (o; # 0). We see
that, although the GB starts smooth and ends flat, sharp
corners form at the extrema of the profile and the
corresponding jump in slope tends to zero as the GB
becomes flat. This results from the |A,| term that gives rise
to the discontinuity in the slope at the extrema of the GB
profile. This is a dynamics, rather than energetics, effect.
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FIG. 2. (a) Numerical solution for the evolution of a GB from
an initially sinusoidal profile for no externally applied force 7 = 0
and ¥ = 0 and B = 0. The GB profile is shown for 1 = 0, 21,
61y, 15, and oo, where ¢, = L/(M,y). (b) The evolution of a GB
pinned at two junctions for 7 =5 x 102y at t = 0, 5t,, 10t,
151, and oo for B = 0.01 (blue) and t = 0, t,, 2t,, 3, and oo for
B = 0.1 (red).

Our next example is an initially flat GB pinned between
two points, such as may occur where a GB is delimited by
two stationary GB triple junctions (TJs)—of course, in a
real polycrystal, TJs are not fixed (we return to mobile TJs
below). This case is shown in Fig. 2(b), where the GB
migration is driven by the stress 7 = 5 x 1072u (¥ = 0).
Since a flat GB will not move without disconnections, we
set B=0.01 (blue) and 0.1 (red). Larger values of B
correspond to higher temperature. Figure 2(b) shows that
the applied shear stress causes the GB to bow out between
the pinning points from the initially flat profile to a time-
independent (equilibrium) shape at late time. Such dis-
connection pair nucleation induced GB curvature has been
experimentally observed [23]. While the detailed shape
(and rate of evolution) of the evolving GB is different for
different values of B (or T), the late-time, stationary shape
is independent of B (the equilibrium profile is determined
by a balance between the driving forces due to the applied
stress, the elastic interactions between disconnections, and
capillarity). Also note that, unlike in the evolution without
thermal disconnection (B = 0) in Fig. 2(a), here no corners
form in the evolving profile. This is a consequence of the
inclusion of a nonzero equilibrium disconnection density B
in Fig. 2(b), which regularizes the discontinuity associated
with |h,| in Eq. (3). Not surprisingly, larger equilibrium
disconnection densities (larger B) lead to faster evolution.

While the previous TJ-pinned GB evolution example
[Fig. 2(b)] provides insight into how a finite-size GB profile
may evolve, it is not a good representation of a GB in a
polycrystal. If the TJs do not move, the average grain size
would not evolve; there would be no grain growth. At the
same time, disconnections cannot move across TJs because
the GBs meeting there will, in general, have distinct
(b, H) sets.

The disconnection flux into a TJ will translate the TJ;
disconnections from different GBs may react (and partially
annihilate) at the TJ, see Fig. 3. Here we present a model for
TJ motion based on the conservation of disconnection step
height and Burgers vector at a TJ. The displacement of TJ is

FIG. 3. Tllustration of TJ motion (red arrow) through discon-
nection fluxes from three GBs.

a consequence of disconnection steps flowing into the TJ.
TJ motion influences the evolution of (motion of discon-
nections on) the three GBs via continuity conditions and
Burgers vector accumulation at the TJ creates a back stress
on the disconnections on the GBs. This means that TJ
motion appropriately accounts for both the step and
Burgers vector fluxes at the TJ and feeds back into the
motion of the three GBs meeting there. See Supplemental
Material [21] for details.

Following this approach, the TJ velocity vr; at X is
proportional to the total inward disconnection flux J(x)
along each of the three GBs meeting at the TJ:

3

vy ==Y HOJO(x)n®, (4)
i=1

where n is the normal to the reference (flat) GB(),
J(x0) = [p'(x0) + B/2}v£}>(x0) for disconnections
moving toward the TJ [and J<i)(x0) = 0 otherwise], Z)E;)
is the disconnection velocity along GB(), and p(*) is the
disconnection density at the TJ. p{) = (0n')/9s\))/H,
where 1) is the GB profile measured in the n'!) direction
and s(%) is the arclength of GB(*) such that (s}, n(!)) forms a
right-hand coordinate system. We note that the TJ may have
an associated Burgers vector arising from the divergence of
the Burgers vector flux there—the elastic field of this TJ
Burgers vector interacts with the disconnections on the GBs
(see Supplemental Material [21]).

Disconnection reactions at TJs require atomic rearrange-
ment on the scale of GB width or disconnection core size
and cannot be described solely on the basis of continuum
descriptions. In the case where disconnection motion along
the GBs is fast compared with the kinetics of disconnection
reactions at the TJ, TJ motion is controlled by disconnec-
tion reactions at the TJs. In this case, the effective
disconnection velocity at the TJ vf;) (xg) should be replaced
by a constant that relates to disconnection reaction rate

constants at the TJ; i.e., vij)(xo) - AW In the A -0
limit, the TJ will not move, while in the A & limit, the
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disconnections near the TJ move infinitely fast and the
disconnection density at the TJ remains zero.

As an example of coupled GB and TJ migration, we
consider a schematic, simplified model “microstructure”
depicted in the inset of Fig. 4(a); the system is periodic
along the x direction, is of infinite extent along y, and all
GBs have identical properties. This is a very special case
where in steady state, the flux of Burgers vectors into the TJ
exactly cancel. A discussion of Burgers vector reaction
at the TJ is discussed for more general cases in the
Supplemental Material [21]. In the absence of an external
driving force on the GBs, the system equilibrates such that
all GBs are flat and meet at the equilibrium angle
0y, = 2x/3. We drive the microstructure evolution by a
uniaxial tensile stress, 6,,, that produces equal and opposite
shear on the GBs of opposite slopes and no shear on the
vertical GBs. Because of the symmetry of the problem,
the vertical GBs remain vertical and the TJs move only in
the £y direction. For this special case, the TJ/GB micro-
structure translates vertically at a steady-state velocity
obtained by solving the continuum GB/TJ evolution
Egs. (3) and (4) as a function of the kinetic parameter
(0<A<o0) via a (finite-difference method (see
Supplemental Material [21]). Figure 4(a) shows this
steady-state microstructure and Fig. 4(b) shows the
steady-state velocity of the GBs/TJs, as well as the
steady-state TJ angles, 6, and 6, [see Fig. 4(a)] as a
function of A.

In the disconnection migration-controlled (large A)
regime, the applied tensile stress drives the GB/TJ migra-
tion at a velocity v, = M Bzb, such that the GBs remain
flat and the TJ angles are at the equilibrium value, 8, =
0, =0, (see Fig. 4). The fact that the translating GB
shapes and TJ angles are identical to those in equilibrium
(zero driving force) may be traced to the equilibrium
disconnection density all along the GB [nonzero B in
Eq. (3)] and the lack of a reaction barrier at the TJ. Note,
however, these results (straight GBs and equilibrium
angles) are special since the Burgers vectors from the
disconnection cancel (in the x direction) here, while, in
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FIG. 4. (a) Equilibrium GB profiles for A/(M,BH/d) =0

(blue), 67.6 (green), 135.2 (red), and oo (black), at an applied
shear stress 7 =5 x 1072u. (b) The steady-state GB velocity
(blue line) and angles, 6, and 0., as functions of A. The red solid
(dashed) lines are the angles at equilibrium states for 7 =5 x
1072 (107 2p).

general, they will not be creating a back stress that will
repel the disconnections from the TJ.

In the disconnection reaction-controlled (small A)
regime, stress-driven GB migration leads to translation
velocities v < vy, and curved GBs. In the A — 0 limit, the
GB profile goes to a steady state (i.e., v = 0), the GBs are
strongly bowed and the TJ angles deviate from the
equilibrium angles by up to 60% (for z/u = 0.05). As A
increases (smaller reaction barriers at the TJs), the GBs and
TJs move faster, become increasingly flat, and the TJ
angles approach their equilibrium value ;. Figure 4(b) also
shows that the magnitude of the deviation of the TJ angles
from 6, increases with increasing applied stress [cf. the red
lines in Fig. 4(b)]. The deviation of the TJ angles from 6,
with increasing velocity is consistent with observations in
capillarity-driven GB migration [24,25] and contact lines in
fluid-solid systems [26].

The continuum equations of motion for GBs and TJs
presented are based on a disconnection description of GB
dynamics. A feature of the disconnection description is the
existence of the coupling factor f = b/H which relates to
the underlying GB bicrystallography. While the bicrystal-
lography admits infinitely many (b, H) sets for each GB
[27], at low temperature the (b, H) set (and /) observed in
experiment or atomistic simulation correspond to the low-
est formation energy. As temperature increases, higher-
energy (b, H) sets may be activated, changing the observed
value of f# [average over all the activated (b, H) sets]. Also,
the value of § observed may depend on the nature of the
driving forces, since some couple to b and others to H.
may be determined based upon bicrystallography and a
small number of atomistic simulations. Nonetheless, the
equations of motion presented remain valid given the
appropriate value of f.
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