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The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of
plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a
level much less than standard scalings predict. Analytic expressions are derived for the saturation distance
and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail
variations in the focusing force, including the self-consistent transverse beam loading.
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The beam hosing instability is a major concern for both
conventional accelerators and plasma-based accelerators. In
both cases, this instability can exponentially amplify the
small misalignments between the beam and the accelerating
structure, and potentially lead to a strong degradation of
the beam emittance, or even to complete disruption of the
beam. Thus the hosing instability (which is related to the
well-known beam-breakup instability) has been actively
studied in its various regimes [1]. This includes the long-
bunch, weakly coupled regime [2,3] applicable to low-
current bunches in conventional accelerators, as well as the
long-bunch [4–6] and short-bunch [7–12] strongly coupled
regimes, which are of interest for beams propagating in
plasmas or ion channels.
In particular, the short-bunch, strongly coupled regime is

relevant to the evolution of the witness beam in plasma-
wakefield acceleration (both for the beam-driven and laser-
driven scheme). In this case, the exponential growth of the
hosing instability as a function of the acceleration distance
has raised concerns regarding the feasibility of a plasma-
based particle collider [13]. However, these predictions
have been made in the context of the blowout (or bubble)
wakefield regime, i.e., when the driver (beam or laser) is
strong enough to expel all the plasma electrons, forming a
comoving ion cavity [14–18]. Plasma accelerators may also
operate in the quasilinear regime, where the driver excites a
plasma density perturbation that is a fraction of the back-
ground plasma density [19]. In this Letter, we show that the
sustained exponential growth of the hosing instability,
which indeed applies for monoenergetic beams in the
blowout regime, does not occur in the quasilinear regime.
Instead, in the quasilinear regime, the instability can rapidly
saturate, and leads only to a moderate amplification of the
beam misalignment.
This early saturation is due to the head-to-tail spread in

betatron frequency that naturally occurs across the bunch in
the quasilinear regime. It is indeed well known that a head-
to-tail spread in betatron frequency can mitigate the hosing
instability [1,20]. However, in the blowout regime, the
focusing force of the wakefield is independent of the

longitudinal coordinate, and thus any head-to-tail spread
in betatron frequency necessarily requires an energy spread
in the bunch. Owing to the typically large beam loading for
high efficiency, large energy spreads (e.g., a few percent
[11]) are required [13]. This is impractical, since many
applications of plasma-wakefield accelerators require
monoenergetic beams. By contrast, in the quasilinear
regime, the focusing force naturally varies as a function
of the longitudinal coordinate, and moreover this variation
can potentially be tailored by beam loading [21]. Therefore,
in the quasilinear regime, no energy spread is required in
order to mitigate the hosing instability.
Hosing equation.—In order to study the hosing insta-

bility, let us consider the equation of evolution for the
centroid of the witness beam. For simplicity, the effects of
beam acceleration are not considered here, but can be
obtained by a simple change of variable [10,22] [i.e., by
replacing, in Eq. (1) below, xc by ~xc ¼ ½γðzÞ=γð0Þ�1=4xc and
z by ~z ¼ R

z
0 ½γð0Þ=γðz0Þ�1=2dz0]. Under these assumptions,

the transverse evolution of the centroid xcðξ; zÞ is governed
by the equation

∂2
zxcðξ; zÞ þ k2βðξÞxcðξ; zÞ

¼ k2c

Z
0

ξ

nbðξ0Þ
np

xcðξ0; zÞ sin½κpðξ0 − ξÞ�κpdξ0; ð1Þ

where z is the propagation distance, ξ ¼ z − ct is the head-
to-tail coordinate (by convention here, ξ ¼ 0 corresponds
to the head of the witness bunch, and thus this bunch
extends in the region ξ < 0), nbðξÞ is the bunch density
at position ξ, and np is the plasma density. Physically, the
left-hand side of Eq. (1) is the equation of motion in a
purely cylindrically symmetric wakefield, while the right-
hand side captures the asymmetric perturbations to the
wakefield, which are driven by the transverse offset xc of
the beam (see, e.g., Refs. [6,12]). The expression of the
coefficients kβðξÞ, kc, and κp depend on the wakefield
regime considered.
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For instance, in the blowout regime [12], Eq. (1)
applies with k2βðξÞ ¼ k2p=2γ, k2c ¼ ðnp=nb;0Þk2p=2γ, and

κp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb;0r2b=npr

2
0

q
ðcψkp=

ffiffiffi
2

p Þ (assuming a uniform bunch

density nbðξÞ ¼ nb;0), where kp is the plasma wave vector,
rb and γ are the radius and Lorentz factor of the mono-
energetic witness beam, r0 is the radius of the blown-out
cavity, and the coefficient cψ (given in Ref. [12]) takes into
account the relativistic nature of the electron sheath. In this
regime and for a monoenergetic bunch, there are no head-
to-tail variations of the betatron frequency; i.e., kβ is
independent of ξ.
On the other hand, in the quasilinear regime (and for a

witness beam having a transverse flattop profile with
kprb ≪ 1), Eq. (1) applies with κp ¼ kp, k2c ¼ k2p=2γ,
and

k2βðξÞ ¼
k2p
2γ

ηd⊥ sin½kpðξd − ξÞ�

þ k2p
2γ

Z
0

ξ

nbðξ0Þ
np

sin½kpðξ0 − ξÞ�kpdξ0; ð2Þ

where the first term corresponds to the transverse wakefield
generated by the driver (either a laser or a charged particle
bunch) and the second term corresponds to transverse
beam loading by the witness beam [21]. In the above
expression, ξd is the average longitudinal position of the
driver and ηd⊥ is the amplitude of the transverse driver
wakefield. For example, in the case of a flattop electron
bunch driver with a density nd, radius rd, and length ld, this
amplitude is ηd⊥ ¼ ðnd=npÞkprdK1ðkprdÞ2 sinðkpld=2Þ,
where K1 is the modified Bessel function. In case
of a linearly polarized Gaussian laser pulse with an ampli-
tude a0 ≲ 1, a waist w0 ≫ rb, and a rms duration τ,
ηd⊥ ¼ ffiffiffiffiffiffi

8π
p

=ðkpw0Þ2 × a20ðωpτÞe−ðωpτÞ2=2. From Eq. (2), it
is clear that kβðξÞ exhibits head-to-tail variations, even for a
monoenergetic beam. As shown below, these variations can
lead to a saturation of the hosing instability.
Analytical solution for a linear chirp.—In the general

case, the system Eqs. (1) and (2) can only be solved
numerically. However, in order to gain insight into the
saturation mechanism, we first study Eq. (1) analytically, in
the simplified case of a linear betatron head-to-tail chirp
and uniform beam density:

kβðξÞ ¼ kβ;0 þ ð∂ξkβÞξ; nbðξÞ ¼ nb;0; ð3Þ

where ∂ξkβ is constant and quantifies the betatron chirp.
Note that, although we will eventually apply this analytical
solution to the case of a quasilinear wakefield, we keep the
generic notations kc and κp from Eq. (1) here, so that the
analysis can be applied to other similar situations (e.g.,
blowout regime with linear energy chirp).

For small betatron chirps (jð∂ξkβÞξj ≪ kβ;0), we find that
standard Laplace transform and steepest descents tech-
niques can be applied to find xcðξ; zÞ. Starting, for instance,
from a uniform initial offset xcðξ; z ¼ 0Þ ¼ δx, asymptotic
solutions can be found for the early stage and late stage of
the hosing instability, where the transition between these
two asymptotic solutions is determined by a characteristic
length,

LsatðξÞ ¼
�
nb;0
np

k2cκ2p
kβ;0j∂ξkβj3jξj

�
1=2

: ð4Þ

(See the Supplemental Material for a derivation of
these solutions [23].) For z ≪ LsatðξÞ (early stage), the
asymptotic solution is given by

xcðξ; zÞ ¼ δx
cos½kβðξÞz− 3

4
Nðξ; zÞþ π

12
�

ð6πÞ1=2Nðξ; zÞ1=2 eð3
ffiffi
3

p
=4ÞNðξ;zÞ;

with Nðξ; zÞ ¼
�
nb;0
np

k2cκ2pzjξj2
kβ;0

�
1=3

; ð5Þ

and corresponds to the well-known scaling of the hosing
instability, whereby the amplitude of the betatron oscil-
lations grows exponentially with z.
On the other hand, for z ≫ LsatðξÞ (late stage), the form

of the solution depends on the sign of ∂ξkβ. For ∂ξkβ > 0

(increasing betatron frequency from tail to head), the
solution is given by

xcðξ; zÞ ¼ δx
cos½kβðξÞz − φðzÞ�
ð8π2Þ1=4NsatðξÞ1=2

e
ffiffi
2

p
NsatðξÞ;

with NsatðξÞ ¼ Nðξ; LsatÞ ¼
�

nb;0
np

k2cκ2pjξj
kβ;0∂ξkβ

�
1=2

;

φðzÞ ¼ nb;0
np

k2cκ2p
2ð∂ξkβÞ2kβ;0z ; ð6Þ

and corresponds to betatron oscillations that have a
constant, saturated amplitude. For ∂ξkβ < 0 (decreasing
frequency from tail to head), the solution is given by

xcðξ; zÞ ¼ −δx
sin½kβ;0z − φðzÞ�

ð32π2Þ1=4NsatðξÞ−1=2
e

ffiffi
2

p
NsatðξÞ

j∂ξkβzξj

þ δx
cos½kβðξÞz − φðzÞ�
ðπ2=2Þ1=4NsatðξÞ1=2

cos

� ffiffiffi
2

p
NsatðξÞ −

π

4

�

ð7Þ

and corresponds to betatron oscillations that initially
decrease as 1=z [first term in Eq. (7)] and eventually
saturate at a low level [second term in Eq. (7)].
We note that Refs. [22,24] considered beam breakup in

conventional accelerators, and that similar analytical sol-
utions were found in the case of a wakefield function that is
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linear in ξ [i.e., where the sin function in Eq. (1) is replaced
by a linear function]. However, this short-beam linear
wakefield function does not properly describe plasma
accelerators where, typically, kpξ ∼ 1.
The asymptotic solutions Eqs. (5)–(7) are compared with

the explicit numerical integration of the hosing equation
Eq. (1) in Fig. 1, for ∂ξkβ > 0 (left-hand panels) and
∂ξkβ < 0 (right-hand panels). As expected, in both cases
the numerical solution (black curve) is initially in agree-
ment with the standard scaling Eq. (5) (red curve). For
longer propagation distances, the instability saturates and is
in good agreement with Eqs. (6) and (7), respectively (blue
curves). Additionally, Eq. (4) correctly predicts the
approximate position of the transition between the early-
stage and late-stage regimes (vertical dashed lines).
Thus, positive and negative chirps (∂ξkβ > 0 and

∂ξkβ < 0) exhibit qualitatively different behaviors, but
both strongly mitigate the hosing instability (compared
to the case with no chirp). In these cases, using the standard
scaling Eq. (5)—which does not take into account this
mitigation—can lead to an overestimation of the instability
by an order of magnitude, or more. Qualitatively, this is
because a betatron chirp causes the different slices of the
bunch to progressively dephase and disrupts their coherent
contribution to the instability after a length Lsat. Note that
the scaling Lsat ∝ j∂ξkβj−3=2 cannot be obtained from a
coarse two-particle model [25].

We note that the qualitative behavior for ∂ξkβ < 0,
whereby the amplitude of the oscillations initially increases
but later decreases, is consistent with the behavior shown in
Ref. [11], where the authors observed, in numerical
simulations, that the deceleration of the tail of driver bunch
(which induces ∂ξkβ < 0) in the blowout regime could
cause a similar decrease in amplitude.
Quasilinear wakefield with optimal beam loading.—Let

us now connect the simplified case of a linear betatron chirp
[Eq. (3)] with the more generic case of the quasilinear
wakefield [Eq. (2)]. Here we will consider the important
case where nbðξÞ is constrained by optimal beam loading.
In order to produce monoenergetic beams, it is indeed
desirable to tailor the beam density so as to flatten the
accelerating field. The accelerating force on a narrow
witness electron beam (kprb ≪ 1) is given by [21]

FzðξÞ
mcωp

¼ −ηd∥ cos½kpðξd − ξÞ� − ½1 − kprbK1ðkprbÞ�

×
Z

0

ξ

nbðξ0Þ
np

cos½kpðξ0 − ξÞ�kpdξ0; ð8Þ

where ηd∥ is the amplitude of the longitudinal driven
wakefield. For example, ηd∥ ¼ ½1 − kprdK1ðkprdÞ�×
ðnd=npÞ2 sinðkpld=2Þ for a flattop electron bunch driver,

and ηd∥ ¼
ffiffiffiffiffiffiffiffi
π=8

p
× a20ðωpτÞe−ðωpτÞ2=2 for a Gaussian laser

pulse. In these conditions, it is well known [21] that optimal
beam loading (i.e., uniform accelerating field) is obtained
for a triangular-shaped witness bunch, with (in our notation)

nbðξÞ ¼
npηd∥

½1 − kprbK1ðkprbÞ�
½sinðkpξdÞ − cosðkpξdÞkpξ�:

ð9Þ

Inserting this expression into the equations for the accel-
erating force [Eq. (8)] and the betatron frequency [Eq. (2)]
yields

FzðξÞ ¼ −ηd∥mcωp cosðkpξdÞ; ð10Þ

k2βðξÞ¼
k2p
2γ

ηd∥
½1−kprbK1ðkprbÞ�

½sinðkpξdÞ−cosðkpξdÞkpξ�

þk2p
2γ

ηd⊥
�
1−

ðηd∥=ηd⊥Þ
½1−kprbK1ðkprbÞ�

�
sin½kpðξd−ξÞ�:

ð11Þ

According to Eq. (11), in the case of optimal beam
loading, the form of the head-to-tail variations of kβðξÞ
depends on the ratio of the transverse and longitudinal
driven wakefield ηd∥=ηd⊥, and thus on the shape of the
driver. For instance, for ηd∥=ηd⊥ ¼ 1 − kprbK1ðkprbÞ
(which occurs, e.g., for a narrow bunch driver with a

FIG. 1. Comparison of the numerical integration of the hosing
equation Eq. (1) in the case of a linear chirp (black curve) with the
early-stage solution [Eq. (5); red curve] and the late-stage
solution [Eqs. (6) and (7) on the left- and right-hand panels,
respectively; blue curve], at different slices along the witness
bunch (i.e., different values of κpξ). The vertical dashed line
corresponds to z ¼ LsatðξÞ, from Eq. (4). The parameters used
here are k2cnb;0=np ¼ k2β;0 and ∂ξkβ ¼ 0.1kβ;0κp (left-hand pan-
els) or ∂ξkβ ¼ −0.1kβ;0κp (right-hand panels).
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radius rd equal to that of the witness beam rb), the second
term in Eq. (11) vanishes, and so kβðξÞ2 is simply linear in
ξ, with a slope proportional to− cosðkpξdÞ. Note that, in the
accelerating phase of the wakefield, cosðkdξdÞ < 0, and
thus this situation corresponds to the regime ∂ξkβ > 0. On
the other hand, for ηd∥=ηd⊥ ≫ 1 − kprbK1ðkprbÞ (which is
usually the case for a Gaussian laser driver, or a wide bunch
driver) the variations of kβðξÞ are more complicated, with
∂ξkβ changing sign from head to tail.
In order to illustrate these two situations, we carried out

particle-in-cell (PIC) simulations with (a) a bunch driver
having a radius rd ¼ 1.25rb [which corresponds to
ηd∥=ηd⊥ ≈ 1 − kprbK1ðkprbÞ, and thus ∂ξkβ > 0] and
(b) a laser driver having kpw ¼ 2 [which corresponds to
ηd∥=ηd⊥ ≫ 1 − kprbK1ðkprbÞ, and thus ∂ξkβ < 0 in most
of the bunch]. For simplicity, we disabled driver evolution
in the simulations, and imposed a driver velocity vd ¼ c.
(This is valid for acceleration distances shorter than the
characteristic length scale of driver evolution, which is on
the order of γdr2d=ϵd for a beam driver with a normalized
emittance ϵd, and on the order of the dephasing length
k20=k

3
p for a guided laser driver.) In both simulations (which

used np ¼ 2 × 1017 cm−3), a witness beam with γ ¼ 200

was initialized with a longitudinal density nbðξÞ given by
Eq. (9) (i.e., optimal beam loading), and a transverse
Kapchinskij-Vladimirskij distribution [26] with a radius
rb ¼ 3 μm and which was matched to kβðξÞ as given by
Eq. (11) (thereby ensuring that the transverse density
profile remains close to flattop throughout the simulation).
In order to seed the hosing instability, the witness bunch
was shifted transversally by an initial uniform offset
xcðξ; 0Þ ¼ 0.12 μm. The simulations were performed with
the spectral quasicylindrical code FBPIC [27] using the
azimuthal modes m ¼ 0 and m ¼ 1. (This is sufficient
because the fields of the unperturbed, symmetrical beam
are entirely contained in the mode m ¼ 0, and because the
perturbations due to the small offset xc create additional
contributions in the modes m > 0 with a typical amplitude
ðxc=rbÞm [6]. Thus, if xc is small compared to rb, the
relevant physics can be captured by the leading order, i.e.,
the mode m ¼ 1.) In the simulations, the cell size was
Δz ¼ 0.17 μm and Δr ¼ 0.06 μm, the time step was
chosen such that cΔt ¼ Δz, and the background plasma
was represented with 8 macroparticles per cell (which was
sufficient to reach numerical convergence, as ascertained
by separate tests featuring 32 macroparticles per cell).
The PIC simulation results are shown in the upper panels

of Fig. 2. As expected from the analysis of Eq. (11), the
betatron frequency kβ exhibits head-to-tail variations in
both cases (top plots). This causes the instability to quickly
saturate as a function of z in the PIC simulations (upper
color maps, showing that the maximum centroid offset
reaches only a limited value on the logarithmic color scale),
in a way that is consistent with the numerical integration of

the equation of hosing Eq. (1) with kβ given by Eq. (11)
(middle color maps). Importantly, the level of the instability
is much lower than it would have been in the case of a
uniform kβ (lower color maps, reaching higher values on
the logarithmic color scale). This can also be seen on the
lineouts of the color maps at a fixed position ξ (bottom
plots), which, again, show that the PIC simulations and
Eq. (1) with Eq. (11) are in agreement regarding the

FIG. 2. Evolution of the centroid offset (log-scaled color map)
as a function of the head-to-tail coordinate ξ and the propagation
distance z, for [case (a); left-hand panels] a bunch driver with
rd ¼ 4 μm, ld ¼ 3 μm, ξd ¼ 27 μm, and nd ¼ 0.7np, and [case
(b); right-hand panels] a laser driver with a0 ¼ 0.4, τ ¼ 20 fs,
ξd ¼ 26 μm, w ¼ 24 μm. The top plots show the head-to-tail
variations of the betatron frequency kβ in both cases. The upper
color maps show results from the PIC simulations, while the
middle and lower color maps show results from the numerical
integration of Eq. (1), with kβðξÞ either given by Eq. (11) (middle
color maps) or considered uniform (lower color maps). The lower
plots are lineouts of the color maps, at a fixed head-to-tail
distance (ξ ¼ −10 μm; indicated by a white dotted line on the
color maps).
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amplitude of the centroid oscillations [some differences
occur because Eq. (1) neglects beam acceleration and the
evolution of the transverse beam profile], and that this
amplitude is lower than that predicted by Eq. (1) with a
constant kβ. This confirms that, in the quasilinear regime,
the hosing instability is less severe than suggested by the
standard scalings [e.g., Eq. (5)] that assume a uniform kβ.
In conclusion, we showed that, in the quasilinear regime

of plasma acceleration, the hosing instability is strongly
mitigated, even for a monoenergetic bunch. This is due to
the natural variations of the focusing forces across the
bunch, and happens both for increasing and decreasing
head-to-tail variations. In the case of optimal beam loading,
the exact form of these head-to-tail variations is controlled
by the shape of the driver.
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