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The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not
accessible in the majority of experiments, whereas the cross sections are. We analytically compute
distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide
range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than
half a century ago in compound-nucleus scattering. We compare our results with data from microwave and
compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the
Ericson regime of strongly overlapping ones.
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Introduction.—Scattering experiments are indispensable
to understand the microscopic world. Mainly developed in
nuclear physics [1–10], scattering theory now finds various
applications in condensed matter physics [11–14], in
classical wave systems [15–17], in wireless communication
[18], and other fields [19–21]. An incoming wave in a
scattering channel b, say, is modified in the scattering zone,
e.g., by a nucleus as the target, and leaves it through a
scattering channel a. The elements SabðEÞ of the associated
scattering matrix S are complex numbers. They provide all
of the information on the changes in amplitude and phase,
typically with energy E. The S matrix is unitary due to flux
conservation and its dimension coincides with the number
M of channels. In a few cases, both the modulus and the
phase of the S-matrix elements can be measured directly,
e.g., in experiments with microwave cavities, microwave
networks, or reverberating elastic objects [22–25]. In the
majority of scattering experiments, particularly in quantum
physics, the phase is not accessible. In mesoscopic quan-
tum dots [26], the electron transport, that is, the conduct-
ance is measured instead, of which the fluctuations are well
understood [13,14,27,28]. In a scattering experiment
involving quantum particles, i.e., atoms [29–32], molecules
[33,34], or nuclei [35], only the incoming and outgoing
particle current can be measured. Their ratio yields the
cross sections. For a ≠ b, they are given by

σabðEÞ ¼ jSabðEÞj2 ¼ ½ReSabðEÞ�2 þ ½ImSabðEÞ�2: ð1Þ
This formula might have to be supplemented with multi-
plicative factors of purely kinematic origin.
If the dynamic in the scattering zone is sufficiently

complex, or in a rather general sense, chaotic, scattering
can usually be thought of as a random process [36]. There

are, in principle, two stochastic approaches to chaotic
scattering [8,13]. In the Mexico approach [37,38], the S
matrix as a whole is viewed as a random matrix, whereas in
the Heidelberg approach, randomness is assumed for the
Hamiltonian H, describing the internal dynamics in the
interaction region. While the former has an unrivaled
conceptual elegance, the latter is better suited for grasping
important features of the internal dynamics, since the
scattering process as such is fully modeled on the micro-
scopic level.
We have three goals: First, we calculate the exact distri-

bution of the off-diagonal cross sections σab with a ≠ b
within the Heidelberg approach, corresponding to inelastic
scattering or rearrangement collisions, thereby providing
the complete solution of a long-standing problem. It applies
from the regime of isolated resonances with average
resonance width Γ smaller than the average resonance
spacing D, i.e., Γ=D ≪ 1, all the way up to the Ericson
regime [39] of strongly overlapping resonances, Γ=D ≫ 1.
Second, we test our results by comparing with cross section
data obtained in microwave and compound-nucleus experi-
ments, focusing on the transition to the Ericson regime.
Third, we provide a simple and robust method to extract
nonrandom contributions to the cross section distribution.
Scattering matrix.—The Heidelberg approach [40,41] is

based on [5]

SabðEÞ ¼ δab − i2πW†
aGðEÞWb; ð2Þ

G−1ðEÞ ¼ E1N −H þ iπ
XM
c¼1

WcW
†
c; ð3Þ

where GðEÞ is the matrix resolvent. The widths of the
resonances generated by the poles of GðEÞ in the complex
energy plane exhibit nontrivial fluctuations [42]. They are
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controlled by the interplay between the Hamilton matrixH,
describing the scattering zone, and the coupling vectors
Wc, that account for the interaction between the channels c
and the states of H.
Scattering can involve different time scales. In nuclear

physics, there are direct, nonrandom reactions on very short
time scales due to channel-channel coupling. On longer time
scales, a compound nucleus is formed by the target and the
incoming particles. Its equilibration ensures a sufficient
amount of stochasticity, justifying the replacement ofH by a
random matrix. We assume the absence of direct coupling
between the channels, implying that the coupling vectorsWc

may be chosen orthogonally, W†
cWd ¼ γcδcd=π [41,43],

where γc is referred to as partial width. Depending on
whether the system is time-reversal invariant or noninvar-
iant,H belongs to either the Gaussian Orthogonal Ensemble
(GOE) or to the Gaussian Unitary Ensemble (GUE) [8,44]
designated by the Dyson indices β ¼ 1 and β ¼ 2, respec-
tively. The entries of the matrices H are Gaussian distrib-
uted,PðHÞd½H� ∼ exp ½−ðβN=4v2ÞtrH2�d½H�with variance
parameter v2. The flat measure d½H� is the product of
differentials of all independent elements in theN × Nmatrix
H. All physical quantities are measured on the local scale of
the mean level spacing. This implies universality, i.e., a very
large class of probability densities gives the same result in
the limit N → ∞; see Refs. [8,44].
Cross section distribution.—Although the cross section

distribution was of high interest already in the early days of
the compound-nucleus and, more generally, of chaotic
scattering, it continued to resist an analytical solution
[45]. In a seminal work using the supersymmetry method,
Verbaarschot,Weidenmüller, and Zirnbauer [40] derived the
exact two–point energy correlation function of the S-matrix
elements. Davis and Boosé calculated three- and four-point
correlation functions [46,47], and Fyodorov, Savin, and
Sommers calculated the distribution of the diagonal S-
matrix elements [48]. Rozhkov, Fyodorov, and Weaver
[49,50] computed a related quantity, namely the statistics
of transmitted power. Putting forward a new variant of the
supersymmetry method, we recently calculated the distri-
butions of the real and the imaginary parts of the off–
diagonal S matrix [51,52]. In a related study, Fyodorov and
Nock obtained the distributions of off–diagonal elements of
the Wigner K matrix [53]. Nevertheless, the cross section
distribution remained out of reach, because the cross section
(1) depends on the real and imaginary parts of the S-matrix
element, which are not independent. Thus, to compute it
for a ≠ b,

pðσabÞ ¼
Z

∞

−∞
dx1

Z
∞

−∞
dx2δðσab − x21 − x22ÞPðx1; x2Þ; ð4Þ

the knowledge of the joint probability density function

Pðx1;x2Þ¼
Z

d½H�PðHÞδðx1−ReSabÞδðx2− ImSabÞ ð5Þ

is inevitable. At first sight, one might expect that this task
leads to doubling the size of the supersymmetric nonlinear σ

model as compared to Refs. [48,51,52], rendering further
evaluation forbiddingly complicated. However, we recently
discovered that a simple, yet far-reaching modification
and generalization of our supersymmetry technique in
Refs. [51,52] yields Pðx1; x2Þ without enlarging this size.
Joint probability density.—It turns out to be advanta-

geous to employ the Fourier transform, i.e., the bivariate
characteristic function

Rðk1; k2Þ ¼
Z

d½H�PðHÞe−ik1ReSab−ik2ImSab ð6Þ

in two dimensions, such that

Pðx1;x2Þ¼
1

4π2

Z
∞

−∞
dk1

Z
∞

−∞
dk2eik1x1þik2x2Rðk1;k2Þ: ð7Þ

Anticpating the data analysis to follow we emphasize that
the characteristic function is obtained by sampling from the
experimental data as easily as the joint probability density
itself. With Eq. (7) in Eq. (4) and the complex variables
k ¼ k1 þ ik2 and x ¼ x1 þ ix2, we find

pðσabÞ ¼
1

4π2

Z
d2x

Z
d2kδðσab − jxj2ÞeiReðk����xÞRðkÞ:

ð8Þ
The x integrals can be done with polar coordinates,

pðσabÞ ¼
1

4π

Z
d2kRðkÞJ0ð ffiffiffiffiffiffiffi

σab
p jkjÞ; ð9Þ

expressing the cross section distribution as a certain Bessel
transform of the characteristic function. The crucial step to
make the calculation of the latter feasible is to use Eq. (3) in
Eq. (6) in the form

RðkÞ ¼
Z

d½H�PðHÞ expð−iπWTAWÞ; ð10Þ

with the 2N component vector WT ¼ ½WT
a;WT

b � for a ≠ b,
and the 2N × 2N Hermitian matrix

A ¼
�

0 −ik�G

ikG† 0

�
ð11Þ

in terms of the resolvent in Eq. (3). In Refs. [51,52] we
proceeded similarly, but for marginal distributions and thus
univariate characteristic functions that depend either on k1
or on k2. Absorbing them as complex variable k into the
definition of A preserves its Hermiticity. Hence, we may
adjust all further steps in Refs. [51,52] by moving the
calculation into the complex k plane. We introduce bosonic
integrals for a Fourier transformation of the characteristic
function (10) in W space to invert the resolvent G in A. A
thereby occurring determinant is written as a fermionic
integral. This allows us to do the ensemble average over the
random matricesH exactly. We obtain a supermatrix model
that we bring onto the local scale by a saddle point
approximation for N → ∞. This yields a supersymmetric
nonlinear σ model extending the one in Refs. [51,52].
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Details are given in Sec. I of the Supplemental
Material [54].
For β ¼ 2 with a unitarily invariantH, the final result for

the characteristic function is

RðkÞ ¼ 1 −
Z

∞

1

dλ1

Z
1

−1
dλ2

jkj2
4ðλ1 − λ2Þ2

FUðλ1; λ2Þ

× ðt1at1b þ t2at2bÞJ0ðjkj
ffiffiffiffiffiffiffiffi
t1at1b

q
Þ; ð12Þ

with the channel factor

FUðλ1; λ2Þ ¼
YM
c¼1

gþc þ λ2
gþc þ λ1

; ð13Þ

where tjc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ2j − 1j

q
=ðgþc þ λjÞ, and g�c ¼ ðv2 � γ2cÞ=

ðγc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2 − E2

p
Þ. The parameter gþc is related to the trans-

mission coefficient or the sticking probability Tc ¼ 1 −
jSccj2 as gþc ¼ 2=Tc − 1. The remarkable fact that the
characteristic function (12) depends only on jkj implies
that the distribution of real and imaginary parts of Sab are
identical [51,52] for β ¼ 2. For β ¼ 1 with an orthogonally
invariant H, we arrive at

RðkÞ ¼ 1þ 1

8π

Z
1

−1
dλ0

Z
∞

1

dλ1

Z
∞

1

dλ2

Z
2π

0

dψ

× J ðλ0; λ1; λ2ÞFOðλ0; λ1; λ2Þðκ1 þ κ2 þ κ3 þ κ4Þ:
ð14Þ

The Jacobian in the above expression is given by

J ¼ ð1 − λ20Þjλ1 − λ2j
2ðλ21 − 1Þ1=2ðλ22 − 1Þ1=2ðλ1 − λ0Þ2ðλ2 − λ0Þ2

; ð15Þ

and the channel factor reads

FOðλ0; λ1; λ2Þ ¼
YM
c¼1

gþc þ λ0
ðgþc þ λ1Þ1=2ðgþc þ λ2Þ1=2

: ð16Þ

The κ’s in Eq. (14) depend on g�c and the complex k
in a nontrivial way; see Sec. II of the Supplemental
Material [54].
Comparison with microwave data.—The mathematical

equivalence of spectra of two–dimensional quantum
billiards and flat microwave resonators is used to exper-
imentally explore a variety of quantum chaotic phenomena
in closed [22,23,55,56] and open systems [57–63]. Here,
we use the data measured for a microwave billiard in the
shape of a classically chaotic tilted-stadium billiard; see
Refs. [62–64] for experimental details. The S-matrix
elements Sab were measured in steps of 100 kHz in a
range from 1 to 25 GHz. Their fluctuation properties were
evaluated in frequency windows of 1 GHz to guarantee a
negligible secular variation of the coupling vectors Wc. In
Ref. [51] we analyzed the marginal distributions of real and
imaginary parts of Sab and the corresponding univariate

characteristic functions separately. We now compare our
new analytical results for the joint probability density
Pðx1; x2Þ, for the bivariate characteristic function
Rðk1; k2Þ and for the cross section distribution pðσabÞ with
these data. Figure 1 shows the bivariate characteristic
function in the frequency range 10–11 GHz. The analytical
and experimental results are plotted together. The same
comparison is shown in Fig. 2 for the frequency range
24–25 GHz; see also Fig. 1 of the Supplemental Material
[54]. The agreement is very good in both cases. For the
lower frequencies, the peak is broad and heavy-tailed,
corresponding to a non-Gaussian joint probability density.
For the higher ones, the peak is narrow and Gaussian–like,
yielding the joint probability density with a nearly
Gaussian shape for the frequency range 24–25 GHz,
displayed in Fig. 3. To explain these results, we point
out that the system undergoes, with increasing frequency, a
transition from isolated resonances to largely overlapping
ones, i.e., to the onset region of the Ericson regime [64]. For
the frequency ranges 10–11 GHz and 24–25 GHz, we have
Γ=D ¼ 0.23 and Γ=d ¼ 1.21, respectively. In the Ericson
regime, scattering matrices and cross sections are random
functions, and the peaks in the spectra cannot be associated
with particular resonances, implying that the distribution of
the S-matrix elements is Gaussian [3,41]. According to
Eq. (4), the distribution of normalized cross sections is then
exponential with pð0Þ ¼ 1. To test this, in Fig. 4 we also
compare our results for the distribution of cross sections
normalized to their mean with the data. As seen, our exact
results compare well to all regimes, including the transition
region. The nearly exponential form with pð0Þ > 1 in the

FIG. 1. Bivariate characteristic function Rðk1; k2Þ in the fre-
quency range 10–11 GHz. Analytical result (blue) and microwave
data (orange).

FIG. 2. As Fig. 1, but in the frequency range 24–25 GHz.
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frequency range 24–25 GHz clearly indicates that we are in
the onset of the Ericson regime.
Comparison with compound-nucleus data.—We also use

data from historical measurements of the compound-nuclear
reaction 37Clðp; αÞ34S [65–67]. In Ref. [66], excitation
functions were measured in steps of 8 keV in the proton-
energy range 11–11.952 MeV for 12 scattering angles
between 31° to 175°. Importantly, these data are fully in
the Ericson regime with Γ=D ≈ 27–36. In Fig. 5, we show a
selection of three such excitation functions for 31°,110°, and
175°. At smaller angles, one observes a background, i.e., a
nonzero minimum value of the excitation function. It is due
to direct reactions, in which, e.g., an incoming particle kicks
out an α particle without the formation of a compound
nucleus. As such processes are stronger in a forward rather
than backward direction, the background disappears at
larger angles. In addition, they are barely affected by the
chaotic dynamics in the scattering zone and thus cannot be
random.Hence, their energy dependence is marginal andwe
may safely subtract the background to obtain the fluctuating
compound-nuclear contribution. In Fig. 4, we compare the
distribution of normalized cross sections, i.e., pðσ=hσiÞ
obtained from the 175° measurement, with the analytical

prediction. For this, we useM ¼ 5 (effective) open channels
and all transmission coefficients Tc ¼ 0.99 in accordance
with Ref. [66], leading to an exponential. We find a very
good match.
To complete our studies, we furthermore apply our

analytical results to nuclear data in the region of weakly
overlapping resonances. In Ref. [68], the reaction
37Clðp;αÞ34S was measured in the proton-energy range
1.1–3.1 MeVat a scattering angle of 90°. These data, shown
in Fig. 6, exhibit an unusually sharp increase at an energy of
approximately 2.6 MeV, which is due to experimental
imperfections. We thus restrict the data analysis to the
energy range 1.1–2.6 MeV. The background stemming
from the direct reactions is a smoothly increasing function
of energy, hence subtracting it is more involved than in the
previously considered case; see Fig. 5. This reflects a
general problem in analyzing compound-nuclear data.
Unfortunately, we cannot exploit recent progress that has
been made employing the K matrix [69,70], since it relies

FIG. 4. Distribution of normalized cross sections. Experimental
data as histograms from microwave (left) and nuclear experi-
ments (right), respectively. Analytical results as solid red lines.

FIG. 5. Excitation functions for the reaction 37Clðp;αÞ34S in the
Ericson regime for scattering angles 31°, 110°, and 175° from top
to bottom. Digitized from Ref. [66].

FIG. 3. Joint probability density Pðx1; x2Þ, analytical (sur-
face), and microwave data (histogram) in the frequency range
24–25 GHz.

FIG. 6. Excitation functions for the reaction 37Clðp;αÞ34S in
below the Ericson regime for scattering angle 90°. Digitized
from Ref. [68].
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on the knowledge of the S-matrix elements. Instead, we put
forward a seemingly new empirical method that is based on
the observation that the peak exhibited by the cross section
distribution of compound-nuclear reactions at σ ¼ 0 is
shifted to a nonzero value by direct contributions. Thus, we
fit the excitation function below 2.6 MeV with a second-
order polynomial, which we then subtract from the data.
This leads to the experimental cross section distribution
displayed in Fig. 4, which is peaked at zero. Our analytical
result is very well capable of describing this clearly
nonexponential distribution for M ¼ 10 effective channels
and Tc ¼ 0.7.
Conclusions.—We solved a long-standing problem by

exactly calculating the distribution of the off-diagonal cross
sections within the Heidelberg approach. This facilitates,
for the first time, an analysis of distributions for the large
number of systems, in which only the cross sections can be
measured. We performed a detailed comparison with
microwave and nuclear data, focusing on the transition
from the regime of isolated resonances towards the Ericson
regime. Our analytical results describe the data very well in
all regimes. We are not aware of any comparable study for
distributions and characteristic functions. In the course of
our data comparison, we came up with a seemingly new
and robust method to subtract the direct part in cross section
data that only relies on experimental information.
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