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The defining property of chimera states is the coexistence of coherent and incoherent domains in systems
that are structurally and spatially homogeneous. The recent realization that such states might be common in
oscillator networks raises the question of whether an analogous phenomenon can occur in continuous
media. Here, we show that chimera states can exist in continuous systems even when the coupling is strictly
local, as in many fluid and pattern forming media. Using the complex Ginzburg-Landau equation as a model
system, we characterize chimera states consisting of a coherent domain of a frozen spiral structure and an
incoherent domain of amplitude turbulence. We show that in this case, in contrast with discrete network
systems, fluctuations in the local coupling field play a crucial role in limiting the coherent regions. We
suggest these findings shed light on new possible forms of coexisting order and disorder in fluid systems.
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Chimera states are spatiotemporal patterns resulting from
symmetry breaking. The discovery of such states in oscil-
lator networks demonstrated that even in systems of iden-
tically coupled identical oscillators, mutually synchronized
oscillators can coexist with desynchronized ones [1]. This
coexistence is particularly remarkable because the coherent
and incoherent domains are bidirectionally coupled: it is
counterintuitive that the state would be persistent despite the
perturbations that desynchronized oscillators unavoidably
exert on synchronized ones, and vice versa. Chimera states
were initially identified in networks of phase oscillators with
nonlocal coupling [1,2], but they have since been demon-
strated for a wide range of oscillator networks [3]. Examples
include networks with couplings that have delays [4,5], have
time dependence or noise [6,7], and are global [8,9] or local
[10-13]; they also include networks of phase-amplitude
oscillators [14,15], inertial oscillators [16,17], and chaotic
oscillators [18,19]. Moreover, chimera states have been
observed experimentally in various systems, including net-
works of optical [20], chemical [21], and mechanical [22]
oscillators. Yet, with very few exceptions [23,24], previous
work has focused exclusively on chimeras in (discrete)
network systems. It is thus natural to ask the extent to
which chimeras states can exist and have salient properties in
continuous systems.

We first note that continuous systems can exhibit analo-
gous examples of coexisting order and disorder in homog-
enous media, but the connection between those phenomena
and chimera states has remained largely unappreciated.
Perhaps the most significant examples occur in fluid
mechanics. Consider, for instance, a Taylor-Couette flow,
where the fluid is constrained to the space between two
rotating cylinders. As the rate of rotation increases, the
dynamics change from an orderly laminar regime to a
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turbulent one through a series of intermediate dynamical
states [25], including a spiral turbulence flow regime
characterized by a persistent spiraling region of turbulent
flow that coexists with a domain of laminar flow [26]. The
spiral turbulence in this system is thus a candidate for a fluid
counterpart of a chimera state. Related examples can be
found in parametrically forced Faraday waves [27,28], where
fluid driven by an oscillating support can form coexisting
domains of regular stripes and chaotic surface waves, and in
the spatiotemporal intermittency regime of Rayleigh-Bénard
convection [29]. A key difference in continuous systems is in
the nature of the coupling, which often consists of a strictly
local (differential) component that acts in the limit of small
spatial scales. Modeling chimera states in continuous sys-
tems and establishing that they can exist in the absence of
any nonlocal coupling thus remains an important outstand-
ing problem in this field. Although working directly with
fluid equations is possible in principle, to address this
problem it is more enlightening to employ simpler model
equations.

In this Letter, we report on chimera states in the locally-
coupled complex Ginzburg-Landau (CGL) equation in
two spatial dimensions. These states, which we refer to
as frozen vortex chimeras, correspond to coexisting
domains of frozen spirals and amplitude turbulence and
are characterized in a previously underexplored parameter
regime of the system. They are distinct from spiral wave
chimeras previously identified in discrete systems [30-32]
in that the core of the frozen spirals is coherent and the
media lose coherence far from the core, and not the other
way around. We analyze these states by introducing a local
coupling field generalization of the Kuramoto-Battogtokh
approach [1]. Crucially, we show that fluctuations in the
coupling field cannot be neglected for such locally-coupled
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continuous systems, which set them fundamentally apart
from previously studied network analogs.
In the study of pattern formation, the CGL equation

%:A—I—(l+ic1)V2A—(1—ic3)|A|2A (1)
describes the universal behavior of a homogenous oscillatory
medium in the vicinity of a supercritical Hopf bifurcation,
where A = A(x,y;1) is a complex-valued field. Modeling
applications of this equation include examples of Rayleigh-
Bénard convection [33-35] and the Belousov-Zhabotinsky
(BZ) reaction [36,37]. The CGL system can exhibit a variety
of dynamical phases depending on the parameters c¢; and c;
[38]. As in other nonlinear wave systems [39], these phases
include different coherent and localized structures. The most
disordered phase is that of amplitude or defect turbulence,
with a disordered and finite density of defects where |A|
reaches zero (and the phase of A is undefined) at a point. A
second important phase consists of frozen spiral structures,
where |A| becomes time independent near the spiral core and
the phase of A has periodic spiraling structures. In particular,
states with slowly evolving domains of frozen spirals, so-
called vortex glass states, have attracted significant attention
[40—43]. One relevant parameter regime previously studied
corresponds to ¢; = 2.0 and ¢35 < 0.75, in which the frozen
(anti)spirals [44] can nucleate out of amplitude turbulence
and grow to a limited size [46]. Of special interest to our
research question would be a parameter regime that supports
frozen spiral states in a turbulent sea but with no growth and
no spiral nucleation over sufficiently long time scales.
Figure 1 shows results of our simulations of the CGL
system (1) as a function of the spatial coordinates x and y.
A regime in which coherent spirals have nucleated out of
the amplitude turbulence and grown to their maximum size,
with interstitial patches of residual amplitude turbulence
between them, is shown in Fig. 1(a). As ¢; and c;3 are
increased, on the other hand, the average time 7, required
for spiral nucleation (in a simulation area L? starting from
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FIG. 1. Coexistence of coherent spirals and amplitude turbu-
lence in the CGL system (1): (a) with ¢; = 1.5 and ¢3 = 0.77 and
random initial conditions after a time t = 10*; (b) with ¢, = 2.0
and c; = 0.85 and a spiral initial condition after a time ¢ = 10%.
The phase 0 = arg(A) is depicted in the upper left and the
amplitude r = |A| in the lower right.

an initial state of full amplitude turbulence) rises sharply.
For ¢; =2.0 and c¢; =0.85, for example, no spirals
nucleated out of amplitude turbulence for times up to
t = 10° in ten simulations (with independent initial con-
ditions); below we estimate that the nucleation time is in
fact 10° times longer than that. However, spirals and
amplitude turbulence can still coexist in this new regime;
Fig. 1(b) shows a frozen vortex chimera after t = 10%,
which was obtained with an initial condition consisting of a
single spiral. This initial condition was generated starting
with a smaller value of c¢; for which nucleation occurs
rapidly and then adiabatically increasing c; after one spiral
had nucleated. These numerical simulations are imple-
mented using accurate discrete approximations of the
continuous CGL system of interest. In all simulations
the system is taken to have linear size L = 384x and is
integrated using a pseudospectral algorithm with N = 1536
modes in each dimension [47]. We carried out a detailed
study of these results with increasingly finer spatial grids
and time steps (see Supplemental Material, Sec. S1 [48]).
Crucially, we employ everywhere sufficiently fine spatial
grids and time steps to ensure convergence to the con-
tinuum limit. Thus, these long-lived spatiotemporal pat-
terns are continuous-media chimera states exhibiting a
sizable coherent region (the spiral) and a sizable incoherent
region (the amplitude turbulence phase).

Figure 2 shows the time-averaged frequency as a
function of position in a frozen vortex chimera with
¢y = 2.0 and c¢3 = 0.85. At the center there is a coherent
domain, which is a frozen spiral of radius p with low mean
angular frequency €2, whereas the outer domain is occupied
by an incoherent region, which has higher mean frequency
and exhibits amplitude turbulence. The quantities p and Q
establish the natural length and time scales of the spiral. We
then formally define a frozen vortex chimera as a state in
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FIG. 2. Time-averaged angular frequency w,, = (d0/dr) for
the frozen vortex chimera in Fig. 1(b), where the arrow indicates
the diameter 2p of the coherent region. The mean frequency in the
coherent region is = 0.15, while the frequency is significantly
higher (>0.40) in the incoherent region. The distinction between
the regions does not depend sensitively on the averaging time
interval (here taken to be 10*). For an animation of the time
evolution of this chimera state, see Supplemental Material [48].
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FIG. 3. (a) Diagram of dynamical phases of the CGL system,
where the frozen vortex chimeras (FVC), vortex glass (VG), and
amplitude turbulence (AT) occupy the intermediate, small,
and large c; regions, respectively. The boundary between VG
and FVC was determined by calculating # from five realizations
of spiral nucleation from an amplitude turbulence initial state;
the black lines show a modest change in this boundary as the
threshold # changes from 10> (dashed line) to 10% (solid line).
The boundary between FVC and AT was determined by adia-
batically varying c; and c3 to move a spiral initial condition past
the point of spiral destabilization, where 7 is predicted to diverge.
(b) Log-log plot of n for ¢; = 2.0 as a function of 0.86 — c3,
corresponding to the white line in (a). The error bars show the
estimated standard deviation, and the line marks the linear fit.

which there exists a spiral (of area zp?) and a surrounding
neighborhood of amplitude turbulence of area O(zp?) that
persists without appreciable change for a time interval
much longer (i.e., orders of magnitude larger) than the
spiral oscillation period of 2z/€Q. Multi-spiral frozen vortex
chimeras can be defined analogously.

We now consider the parameter range over ¢; and c3 in
which such frozen vortex chimeras exist. These chimeras
are intermediate states between the vortex glass phase and
the amplitude turbulence phase, as shown in Fig. 3(a). We
first note that if a spiral is to coexist with amplitude
turbulence for many periods of oscillation and qualify as a
chimera, then (i) the spiral must persists in its environment
(which sets the boundary with the amplitude turbulence
phase) and (ii) the rate of spiral nucleation in its neighbor-
hood must be small compared to its angular frequency Q
(which sets the boundary with the vortex glass phase).
To quantify the vortex glass transition, we define
n= (L*/7p*)|T e/ (27/Q)], which is the nucleation time
T e properly normalized by the spiral period 27/Q and the
normalized neighborhood area zp?/L?. Our definition of a
frozen vortex chimera requires # to be orders of magnitude
larger than 1, while states with faster spiral nucleation, and
hence smaller #, are considered a vortex glass. Systematic
simulations along the line ¢; = 2.0 revealed that frozen
vortex chimeras exist up to values of c; < 0.86. Figure 3(b)
shows a log-log plot of the normalized nucleation time 7
versus 0.86 — ¢3 for ¢y = 2.0. The transition boundary
between vortex glasses and frozen vortex chimeras thus
does not depend sensitively on the threshold for 7, since the
increase in n is extremely stiff as c¢3 is increased, as
demonstrated by the contour lines in Fig. 3(a) and the

steep slope (with scaling exponent of approximately —10)
in Fig. 3(b). Like other chimera states [49], frozen vortex
chimeras are transient states. The mechanism of their
collapse into coherent states is through the nucleation of
new spirals in the neighborhood of the coherent domain.
This process can take an exceedingly long time. For
example, the scaling in Fig. 3(b) indicates that the lifetime
of the frozen vortex chimera in Fig. 2 is over a billion spiral
oscillation periods.

It follows from Fig. 3(a) that the parameter regime where
frozen vortex chimeras prevail is relevant for experimentally
accessible systems such as the BZ reaction system [36,37].
In models of the BZ system, the CGL parameter c; is
determined primarily by species diffusion coefficients,
while the parameter c¢; is determined by reaction rates
and concentrations. By varying sulfuric acid concentrations,
for example, the parameter regime c¢;=1.4 and 0.5<c3<
0.7 just below the transition between vortex glasses and
frozen vortex chimeras (around c; =~ 0.8 in Fig. 3) has been
experimentally explored [37]. This provides evidence that
frozen vortex chimeras can be realized experimentally in
much the same fashion as in our numerical procedure. One
important experimental consideration is the impact of
imperfect experimental conditions—the basin of attraction
of the frozen vortex chimeras must not be inaccessibly small
if they are to be found in reality. To investigate this question,
we have randomly perturbed the chimera state and observed
its subsequent recovery or destruction (see Supplemental
Material, Sec. S2 [48]). So long as perturbations are not too
large, the system is attracted back towards the frozen vortex
chimera, thus providing evidence that with sufficiently
controlled experimental conditions, frozen vortex chimeras
should be experimentally accessible.

To analyze continuous chimera states, we employ a local
coupling field approach similar to the one introduced in
Ref. [1]; local order parameters have also recently found
application in the synchronization of complex networks
[50]. Rather than relying on the (discrete) local coupling
fields used there, we derive the appropriate local coupling
field in the continuous case of Eq. (1) by first differentiating
A = re' to obtain

do_1 (104 1 0a 2
dt 2i\Adr A* ot )’

where the asterisk denotes complex conjugation. Using
Eq. (1) in Eq. (2), we can identify the coupling terms as
those involving spatial derivatives, namely (\/1 + ¢3/2ir)
(€@ OV2A — ¢71@0)V2A*) where a=arctanc,. To
obtain evolution equations for  and @ analogous to those
for discrete systems, it follows that the local coupling field
should be defined as Re® = (1/1 + ¢3/r)V?A. Indeed,
using this coupling field, Eq. (1) can be expressed as
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o = c3r + Rsin(@ — 0 + a), (3)
dr 5
E:r(l—r)—ercos(@—Q—ka), (4)

where the main difference from discrete phase oscillators is
that the frequency term in the @ equation is a function of r
and the coupling field is differential in » and 6.

Assuming a coupling field with time-independent
R(x,y) and O(x,y,t)=Qt+®(x,y) with Q and P(x,y)
time independent, a coherent solution is one with dr/dt=0
and df/dt = Q. Noting that R> = R?>sin*(® — 0 + a) +
R?cos?(® — 0 + a) and solving Egs. (3) and (4) for the
trigonometric functions, the coherent solutions must satisfy
R? = (c3r = Q)* + (1 — r?)%. The amplitudes of these
coherent solutions are

o \/1 te@: TR - -0F

1+ c3

where, given that R is real and positive, the condition for a
(real) solution to exist is R > R, = (|c; — Q|/+/1 + ¢3).
Figure 4(a) shows the time-averaged local coupling field
R,, of a frozen vortex chimera. As with other chimera states
considered in the literature, we see that the coupling field
amplitude is sufficiently large in the coherent domain to
induce synchronization while it is too small to do so in the
incoherent domain (with the exception of the red halo region
surrounding the coherent domain). Figure 4(b) shows R,,
and the time-averaged amplitude r,,, where it is clear that the
solution in Eq. (5) (dashed line) corresponds to the coherent
domain (yellow dots). Note, however, that a portion of the
desynchronized domain has R, larger (not smaller) than the
respective solution in Eq. (5), i.e., it satisfies R,, > R.=0.54.
The dots marked red in that portion correspond to the red
halo surrounding the coherent domain in Fig. 4(a). To
understand why this halo region does not synchronize with
the coherent domain, we must consider the fluctuations of

the local coupling field. These fluctuations are quantified
as the standard deviation oy calculated over the time series
of R and are shown in Fig. 4(c).

A distinguishing property of the frozen vortex chimeras
apparent in Fig. 4(c) is that, while negligible in the coherent
domain, the fluctuations of the local coupling field rise in
the halo region and saturate to large values in the amplitude
turbulent domain. In the discrete nonlocal coupling sce-
nario considered in the original formulation of the self-
consistent mean-field approach [1], where many oscillators
contribute to the mean field (in fact all of those for which
the coupling kernel is nonzero), fluctuations in the mean-
field solution are negligible in both the coherent and the
incoherent domains. Incidentally, this underlies the increas-
ing stability of chimera states with increasing system size in
discrete network systems [49], rendering the thermody-
namic limit of such systems sharply different from the
continuous problem considered here. We argue that the
origin of the difference in the nature of the fluctuations
derives from the fact that the CGL system (1) is continuous
and the coupling is local. Thus, the portion of the medium
contributing to the local coupling field is not large enough
to average out the fluctuations.

We propose that the loss of synchrony across the halo
region is driven by these enhanced fluctuations. The media in
the halo is inclined to synchronize with the spiral because of
the large local coupling field, but the large fluctuations present
in the amplitude turbulent domain diffuse into the halo region
and frequently disrupt this synchronization. A balance is
achieved in which the inner spiral is shielded from the
fluctuations in the amplitude turbulent domain by the halo,
where the fluctuations decay and synchronization is repeat-
edly achieved and lost. To test this mechanism, we performed
systematic simulations in which we directly modulate the
fluctuations in the amplitude turbulent portion of the media
(see Supplemental Material, Sec. S3 [48]). Increasing the
scale of the fluctuations causes the spiral to shrink in size,
while decreasing them causes the spiral to grow. These
simulations thus support the proposed fluctuation-based
mechanism limiting the growth of the coherent spiral.
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FIG. 4. Time-averaged local coupling field R,, for the conditions in Fig. 2 as a function of: (a) the two spatial coordinates; (b) the time-
averaged amplitude r,, for points in the coherent region (yellow dots), halo region (red dots), and remaining incoherent region (blue
dots); and (c) the x coordinate along the line y = 0 (magenta dots). The inset in (b) magnifies the box, which includes most points in the
incoherent region. In (c) we also show the fluctuations o of R (green dots). The dotted lines in (a) and (c) delimitate the coherent
domain in Fig. 2. The dashed line in (b) marks the solution in Eq. (5) and in (c) marks the critical value R = R, above which this (real)
solution exists.
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In summary, we have studied a novel chimera state
appearing in the continuous locally-coupled complex
Ginzburg-Landau equation. We noted that the nucleation
of spiral structures out of an amplitude turbulent domain
becomes negligibly small for a range of intermediate values
of the parameter c;, and thus that the chimeras can persist
without change for very long times. In contrast to fluctua-
tions in chimera states in nonlocally-coupled discrete
systems, the fluctuations in the local coupling field of
frozen vortex chimeras cannot be neglected [51]. We
conjecture that such fluctuations are responsible for the
breakdown of coherence at the boundary between the
coherent and incoherent domains. This appears to reflect
a fundamental difference between the chimeras investigated
here and those considered previously in nonlocal variants
of the CGL equation [52]. This fluctuation-based mecha-
nism provides insights into experimental observations of
coexisting order and disorder in continuous fluid media.
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Steinbock and Seth Fraden. This work was supported by
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