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A theoretical description of twisted (vortex) electrons interacting with electric and magnetic fields is
presented, based on Lorentz transformations. The general dynamical equations of motion of a twisted
electron with an intrinsic orbital angular momentum in an external field are derived. Methods for the
extraction of an electron vortex beam with a given orbital polarization and for the manipulation of such a
beam are developed.
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The discovery of twisted (vortex) electron beams carrying
intrinsic orbital angular momentum (OAM) [1] has proven
the existence of vortex states of a free electron. Unlike
corresponding light vortex beams (which have been success-
fully used for 25 years [2]), electron beams are charged.
Therefore, they also possess significant orbital magnetic
moments. Amazingly, a vortex electron in vacuum can be
described by the usual Dirac equation for a free particle.
In the present work, the system of units ℏ ¼ 1, c ¼ 1 is

used. We include ℏ and c explicitly when this inclusion
clarifies the problem. We use the weak-field approximation
and neglect terms quadratic in external fields.
We give a detailed classical description of dynamics of a

twisted particle in external electromagnetic fields. There
exists the perfect agreement between relativistic equations
of motion for the momentum and the spin in classical
electrodynamics and quantum mechanics of spin-1=2
particles in electromagnetic fields (see Refs. [3–9] and
references therein). The wonderful agreement with the
corresponding classical equations takes place for relativis-
tic spin-1=2 particles in gravity [10]. Relativistic equations
of motion for spin-0 [11] and spin-1 [12] particles also fully
agree with the corresponding classical equations. This
means that the use of an appropriate classical approach
for obtaining equations of motion is perfectly admissible.
From the viewpoint of quantum mechanics, a twisted

electron is a single pointlike particle. Its wave function
mirrors a density of a probability to find the electron in a
given point of the space. The standard classical model of
electron in an atom developed by founders of quantum
mechanics is an electron cloud [13] characterizing a spatial
distribution of an electron charge. When the atomic
electron has a nonzero OAM, the model of the rotating
charged cloud is used. We adopt this model to the
considered problem. A rotation of the charged electron

cloud is a classical counterpart of a current operator
describing a motion of the electron about the direction
of the intrinsic OAM. In this simple classical picture, an
intrinsic OAM originating from the cloud rotation can be
parallel to the momentum direction and can be nonzero for
a particle at rest. So, the classical description should use
some intrinsic rotation which is not associated with the
electron momentum p. Besides the intrinsic rotation, an
extrinsic rotation of the electron can take place (for
example, in an external magnetic field). The latter rotation
depends on the electron momentum and is defined by the
extrinsic OAM r × p. Quantum mechanics uses the single
operator of the OAM defined by −iℏr × ∇. Despite the
orthogonality of the classical quantities p and r × p, the
expectation values of the operators −iℏ∇ and −iℏr × ∇ can
be parallel to each other. The intrinsic and extrinsic OAMs
have been introduced in Ref. [14].
The simple classical model of the rotating charged cloud

was not previously used because precedent investigations
followed the quantum-mechanical approach. There are
several quantum-mechanical descriptions of electron vortex
states as axially symmetric plane waves (see reviews
[14,15]). A standard approach consists in the use of the
paraxial approximation [16]. In this approximation, jpxj ≪
p; jpyj ≪ p when a wave moves close to the z axis.
Another solution of the wave equation is expressed in
terms of the Bessel functions [14,17]:

ψB
l ∼ Jjljðk⊥ρÞ exp ½iðlϕþ kzzÞ�; k2⊥ þ k2z ¼ k2: ð1Þ

Here Jl is the Bessel function of the first kind, l ¼
0;�1;�2;… is the azimuthal quantum number, kz ¼
pz=ℏ is the longitudinal wave number, k⊥ ¼ p⊥=ℏ is
the transverse (radial) wave number, and k ¼ p=ℏ. One
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more description results in the use of exponential wave
packets of Dirac electrons [18].
The wave function Eq. (1) is the most relevant to the

goals of the present study because the paraxial approxi-
mation may become invalid after a Lorentz transformation.
Indeed, the free electron can be considered to be in its rest
frame. The Lorentz transformation of the OAM from the
lab frame (L ¼ Lzez) to the rest frame results in Lð0Þ ¼ L.
The OAM in the frame moving with the arbitrary velocity
V relative to the particle rest frame is given by

L¼ ϵ

mc2
Lð0Þ−

ðLð0Þ ·pÞp
mðϵþmc2Þ ; ϵ¼ mc2ffiffiffiffiffiffiffiffiffiffiffi

1−V2

c2

q : ð2Þ

The orbital helicity of the particle is equal to

horb ≡ L · e ¼ Lð0Þ · e; ð3Þ
where e ¼ p=p is the unit vector parallel to the momentum
direction.
Equations (2) and (3) prove that the mutual orientation of

the momentum and the OAM and the orbital helicity of the
vortex Dirac particle depend on a reference frame. So,
Eq. (1) for the Bessel wave is preferable. In this case, the
z axis can be attributed not only to the momentum direction
but also to any other direction.
To develop methods for the manipulation of electron

vortex beams, we need to determine the evolution of the
OAM in electromagnetic fields. This determination will be
based on Lorentz transformations. These transformations
process several critical properties for the intrinsic and
extrinsic orbital angular momenta as comparedwith the spin.
While the commutation relations and the Poisson brack-

ets for the OAM and the spin are very similar, there is one
big difference between the two quantities. The OAM is
formed by the spatial components of the antisymmetric
tensor Lμν ≡ xμpν − xνpμ. Unlike the OAM, the conven-
tional spin ζ is defined by the spatial part of the four-
component spin pseudovector aμ in the particle rest frame.
The connection between the four-component spin pseudo-
vector and the antisymmetric spin tensor is given by (see,
e.g., Ref. [19]) aλ ¼ −2eλμνρSμνuρ, where eλμνρ is the four-
dimensional completely antisymmetric unit tensor (Levi-
Civita tensor), uρ ¼ pρ=m is the four-velocity, and
aμuμ ¼ 0. The spatial components of the spin tensor
Sμν form the three-component spatial pseudovector S,
which is not equivalent to ζ.
The key reason for the decomposition of the OAM into

intrinsic and extrinsic parts is its nonzero value in the particle
rest frame (p ¼ 0). This value defines the intrinsic OAM
originating from the rotation of the charged cloud. The
extrinsic OAM is defined by the motion of the center of
charge of the electron. Evidently, we can suppose thismotion
to be independent of the presence of the intrinsic OAM. As a
result, the dynamics of the two parts of the electric dipole
moment (EDM) can be independently described.

We need to repeat that the contributions of the intrinsic and
extrinsic parts of the OAM into the quantum-mechanical
Hamiltonian are described by a single operator, −iℏr × ∇.
Another key point is the difference between dynamics of

the intrinsic OAM and the spin. This difference is caused by
different definitions of the two quantities. Since the conven-
tional three-component spin is defined in the particle rest
frame being accelerated in external fields, the angular
velocity of its precession includes the correction for the
Thomas effect. Contrary to this, the OAM is defined via the
antisymmetric tensor Lμν (see above) and the angular
velocity of its precession does not include this correction.
For a relativistic description, it is convenient to consider the
nonrotating instantaneous inertial frame accompanying the
particle. In this frame, p ¼ 0 at the given moment of time.
The magnetic moment caused by the orbital motion of the
charged cloud is equal to

μð0Þ ¼ e
2mc

Lð0Þ: ð4Þ
The corresponding relativistic quantum-mechanical for-
mula has been derived in Ref. [20]. The angular velocity
of the precession of the intrinsic OAM in the nonrotating
instantaneous inertial frame is defined by the Larmor
formula:

Ωð0Þ ¼ −
e

2mc
Bð0Þ: ð5Þ

An interaction of the electric and magnetic dipole
moments, d and μ, with the external fields is defined by
the general Hamiltonian

H ¼ −d · E − μ · B; ð6Þ
where all quantities are defined in the lab frame. Now we
can take into account that the quantities Lð0Þ and μð0Þ are
connected with the nonrotating instantaneous inertial frame
and can perform the relativistic transformation of the dipole
moments to the lab frame. It has the form [8]

d ¼ β × μð0Þ; μ ¼ μð0Þ −
γ

γ þ 1
βðβ · μð0ÞÞ;

β ¼ v
c
; γ ¼ ð1 − β2Þ−1=2; ð7Þ

where we have used the fact dð0Þ ¼ 0.
As a result, the Hamiltonian is given by

H ¼ −
e

2mc

�
B · Lð0Þ −

γ

γ þ 1
ðβ · BÞðβ · Lð0ÞÞ

− ðβ × EÞ · Lð0Þ
�
; ð8Þ

or, using Eq. (2),

H ¼ −
e

2mcγ
½B · L − ðβ × EÞ · L�: ð9Þ

The use of Poisson brackets allows us to derive the
relativistic equation for the Larmor precession of the
intrinsic OAM:
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dL
dt

¼ Ω × L; Ω ¼ −
e

2mcγ
½B − β × E�: ð10Þ

It should be added that the torque provided by the
electric field is nonzero only in the presence of the EDM d,
but it originates only from a motion of the magnetic dipole
moment.
We expect that the relativistic equation for the Larmor

precession of the extrinsic OAM is similar. When spin
effects are disregarded, the Hamiltonian of a particle in a
uniform magnetic field takes the form

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp − eAÞ2

q
; A ¼ 1

2
B × r: ð11Þ

In the weak-field approximation,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
−

eB · LðeÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ; ð12Þ

and the Larmor precession of the extrinsic OAM in the
uniform magnetic field is given by

dLðeÞ

dt
¼ ΩðeÞ × LðeÞ;

ΩðeÞ ¼ −
eB

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ¼ −
e

2mγ
B: ð13Þ

This equation is similar to Eq. (10).
It is instructive to compare the results for the intrinsic

OAM and the spin. The use of the well-known Lorentz
transformations for the fields brings the lab frame
Hamiltonian to the form

H ¼ −
e

2mc
Bð0Þ · Lð0Þ: ð14Þ

The lab frame Hamiltonian for the spinning particle in the
absence of the EDM is given by (jζj ¼ s) [8]

H ¼ −
e
mc

�
gBð0Þ

2γ
þ β × Eð0Þ

γ þ 1

�
· ζ; ð15Þ

where g ¼ 2mcμ=ðesÞ and s is the spin quantum number.
Evidently, the main difference between Eqs. (14) and (15)
is the absence of Thomas precession for the intrinsic OAM.
Our result for the dynamics of the intrinsic OAM in an

electric field differs from that presented (without deriva-
tion) in Refs. [14,21]. Equation (2.27) in Ref. [14] and
Eq. (8) in Ref. [21] cannot be correct because they predict
an infinitely large angular velocity of precession of the
intrinsic OAM at p → 0. Only the particle momentum
direction shows such a behavior; see Ref. [4].
The results obtained permit us to develop methods for

the manipulation of electron vortex beams. These methods
are similar to those governing the spin while formulas
defining dynamics of the intrinsic OAM and the spin differ.

We can specify manipulations of the electron vortex beams
and present their quantitative descriptions.
Separation of beams with opposite directions of the

OAM.—Such a separation can be achieved in a longitudinal
magnetic field. This field can be nonuniform [14] and even
uniform. The nonuniform longitudinal magnetic field leads
to a force acting on the OAM. Because of the one-to-one
correspondence between the OAM and the corresponding
magnetic moment, the direction of this force depends on
that of the OAM. As a result, accelerations of particles with
oppositely directed OAMs have different signs. This leads
to different velocities of particles with the opposite direc-
tions of the OAMs. Therefore, the beam with a given OAM
direction can be extracted (e.g., with the Wien filter).
Importantly, even a uniform longitudinal magnetic field

leads to a dependence of a particle velocity on the OAM
direction. If particles have equal energies beyond the
longitudinal magnetic field, their velocities in this field
satisfy the following equation:

v ¼ v0 þ
e

2m2c2β0γ40
B · L; ð16Þ

where v0 is the particle velocity beyond the field. This effect
either decreases or increases the beam separation caused by
the nonuniform longitudinal magnetic field.
The manipulations considered below allow one to extract

a beam with a needed orbital polarization.
The use of a transversal magnetic field is less convenient

because this field can destroy a beam coherence as a result
of Larmor precession.
Freezing the intrinsic OAM in electromagnetic fields.—

As in spin physics [22], it is important to consider a
condition which allows one to freeze the intrinsic OAM
(i.e., to keep the orbital helicity constant) in electromag-
netic fields. These fields deflect the beam. We consider a
potential for a beam deflection without a change of horb
defined by Eq. (3). In this case, the angular velocity of the
relativistic Larmor precession Eq. (10) should be equal to
the angular velocity of the rotation of the momentum
direction N ¼ p=p ≈ β=β [4]:

dN
dt

¼ ω × N; ω ¼ −
e

mcγ

�
B −

N × E
β

�
: ð17Þ

The standard geometry is E⊥B⊥β.
The condition ΩL ¼ ω is satisfied when

B ¼
�
2

β2
− 1

�
β × E: ð18Þ

The device defined by Eq. (18) is a deflector of the electron
vortex beams which freezes the OAM relative to the
momentum direction. It rotates the beam direction with
the angular velocity
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ΩL ¼ ω ¼ −
eB

mcγðγ2 þ 1Þ : ð19Þ

For standard beams [23] with energy of the order of
102 keV, the deflection is rather effective.
We should add that the use of the proposed beam

deflector after or together with the longitudinal magnetic
field considered above allows one to separate out electrons
with oppositely directed OAMs.
Rotator of the intrinsic OAM.—Another important beam

manipulation is a rotation of the intrinsic OAM relative to the
momentum direction. This manipulation is desirable and
even necessarywhen the beam is confined in a storage ring or
trap. In this case, it is convenient to direct the OAM of the
beamvertically. Thevertical direction is preferable because it
is not affected by the main vertical magnetic field and this
orbital polarization can be conserved. In accelerator physics,
one frequently uses aWien filter as a spin rotator. This device
can also be applied as an OAM rotator. In this case, E⊥B⊥β
and the Lorentz force acting on electrons is equal to zero
(E ¼ −β × B). Therefore, Eq. (10) for the relativistic Larmor
precession takes the form

ΩðWÞ ¼ −
e

2mcγ3
B: ð20Þ

When beams with oppositely directed OAMs have
different velocities, a Wien filter allows one to extract
electrons with one of orbital polarizations.
Flipping the intrinsic OAM.—If an electron vortex beam

with an upward or a downward orbital polarization is
confined in a storage ring, the direction of the intrinsic
OAM can be flipped. A flip of the OAM is similar to that of
the spin and can be fulfilled by the method of the magnetic
resonance. A significant difference between the flips of the
OAM and the spin consists in different dependences of the
resonance frequencies on the electric and magnetic fields.
A spin flip frequency in a storage ring is defined by the
Thomas-Bargmann-Mishel-Telegdi equation (see Ref. [9]
for details) whose distinction from Eq. (10) is evident. The
OAM flip can be forced by a longitudinal (azimuthal)
magnetic field oscillating with the resonance frequency. A
Wien filter with a vertical electric field and a radial
magnetic field oscillating with the resonance frequency
[9,24] can also be used for the OAM flip.
In summary, we have presented the basic theoretical

description of dynamics of the vortex electrons in electro-
magnetic fields. Our derivations have been based on the
classical approach and Lorentz transformations. We have
shown that the orbital polarization of such electrons can be
managed and have developed basic methods for the
manipulation of electron vortex beams. We expect that
the results presented can be applied not only to electrons
but also to other particles. In particular, twisted positron
beams could also find important applications. We suppose
that they could be used for testing magnetic materials and
for a formation of twisted positronium atoms. For these

purposes, a manipulation of twisted positron beams (for
example, their deceleration) is necessary.
We believe that the obtained theoretical results can also

be useful for high-energy physics.
In precedent theoretical investigations (see Refs. [14,15,

17,18,21,25–28] and references therein), the quantum-
mechanical approach was used. However, it is very difficult
to fulfill an appropriate quantum-mechanical analysis for a
twisted particle in general electromagnetic fields. As a result,
previous publications focused attention onmagnetic or other
specific interactions. Otherwise, a consideration of only
magnetic interactions does not allow one to obtain a general
relativistic equation of motion for the intrinsic OAM and to
develop methods of a manipulation of twisted electron
beams.We should add that such amanipulation is impossible
if only the magnetic field is used. We present the solution of
the two problems. In our work, the general relativistic
equation of motion for the intrinsic OAM has been obtained
and themethods of a manipulation of twisted electron beams
have been developed for the first time.
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