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Magnetic monopoles, if they exist, would be produced amply in strong magnetic fields and high
temperatures via the thermal Schwinger process. Such circumstances arise in heavy-ion collisions and in
neutron stars, both of which imply lower bounds on the mass of possible magnetic monopoles. In showing
this, we construct the cross section for pair production of magnetic monopoles in heavy-ion collisions,
which indicates that they are particularly promising for experimental searches such as MoEDAL.
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There are compelling theoretical reasons to expect the
existence of magnetic monopoles [1–3] and, as a conse-
quence, there have been extensive searches for them [4,5],
but so far with no positive results. Astrophysical [6] and
cosmic ray [7] searches have provided constraints on the
monopole flux in the Universe, and collider searches [8–12]
have constrained the production cross section over a given
mass range. However, in the absence of reliable theoretical
predictions for the flux or the cross section, these cannot be
converted into direct bounds on the monopole mass.
In collider searches, the tree-level Drell-Yan cross section

has often been used to obtain indicative mass constraints
[9–11]. However, this is not a reliable estimate because, if
magnetic monopoles exist, they are strongly coupled. The
Dirac quantization condition implies that the minimum
magnetic charge is given by gD ≔ 2π=e, where e is the
charge of the positron and we use natural units, c ¼ ℏ ¼
kB ¼ ϵ0 ¼ 1. The magnetic fine structure constant is then
αM ≈ 34. As a result, there have been no rigorous calcu-
lations of any cross sections for magnetic monopole pair
production.
In low entropy collisions of particles it has been argued

that the pair production of ’t Hooft–Polyakov magnetic
monopoles [2] is exponentially suppressed by [13]

e−16π=e
2 ≈ 10−236; ð1Þ

even at arbitrarily high energies. If this suppression is
indeed present, it would effectively rule out the production
of composite magnetic monopoles in, for example, p-p
collisions at the LHC. For elementary (Dirac) monopoles
[14] the arguments of Ref. [13] do not apply and cross
sections for pair production are completely unknown.
In this Letter we consider magnetic monopole pair

production in strong magnetic fields and high temperatures.
We use the results of Ref. [15], due to the present authors,
where the rate of thermal Schwinger pair production was
calculated at arbitrary coupling, generalizing an earlier
calculation at zero temperature [16]. From this, we derive
an expression for the cross section of magnetic monopole
pair production in heavy-ion collisions. For high enough

collision energies, the result is not exponentially sup-
pressed as in Eq. (1). We believe that this is because the
energy is spread across many degrees of freedom in the
initial thermal state. This is what was found in the case of
(Bþ L) violation [17,18], in the language of which the
process we consider is a sphaleron induced decay. By
comparison to an experimental upper bound on the cross
section [19], we derive lower bounds on the mass of
possible magnetic monopoles. These bounds are model
independent in the sense that they apply to both elementary
and composite (e.g., ’t Hooft–Polyakov) monopoles and do
not rely on (inapplicable) perturbation theory.
We also consider magnetic monopole pair production in

the strong, long-livedmagnetic fields present around neutron
stars. Sufficiently light magnetic monopoles would be
produced by thermal Schwinger pair production and dis-
sipate the magnetic field. By comparison with the observed
magnetic field strengths we derive another set of lower mass
bounds.
For comparison, the current best, model-independent,

lower bound on the mass of magnetic monopoles derives
from reheating and big bang nucleosynthesis (BBN).
Inflation would have diluted away any preexisting mag-
netic monopoles [20] but, during reheating, sufficiently
light magnetic monopoles would have been produced
thermally. Hence, from the bounds on the monopole flux
in the Universe [6,7], one can derive a bound on the ratio of
the mass of any magnetic monopoles to the reheating
temperature m=TRH ≳ 45 [21]. Further, as the reheating
temperature must be greater than the temperature of BBN,
TBBN ≈ 10 MeV, we find that the mass of any magnetic
monopoles must satisfy m≳ 0.45 GeV.
Magnetic monopoles are strongly coupled to the photon

field and hence the usual weak coupling results for
Schwinger pair production are inapplicable. However, when
the external field is weak and slowly varying, the calculation
of the rate of Schwinger pair production becomes semi-
classical irrespective of the magnitude of the coupling. In
particular, the small semiclassical parameter, akin to ℏ, is
gB=m2, where g is the magnetic coupling, B is the external
magnetic field, andm is themass of themagneticmonopoles.
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In the leading semiclassical approximation, the rate of
pair production per unit volume, ΓT , is of the form

logðΓTÞ ¼ −
m2

gB

�
~Sðg;m; B; TÞ þO(

gB
m2

log

�
gB
m2

�
)
�
;

ð2Þ
where m2 ≫ gB and the action ~S is a function only of the
dimensionless ratios g3B=m2 and mT=gB. It is not smooth,
having discontinuities that can be described as phase
transitions. It has been calculated in Ref. [15], analytically
in various limits as well as numerically.
Within these approximations, of a weak and slowly

varying external field, the results are not model specific.
They apply to both elementary and composite monopoles,
whether scalar or spinor (seeAppendixA andAppendixB of
Ref. [15]). This is because, in the physical regime we
consider, any structure of the magnetic monopoles is
invisible, as in Refs. [22]. For composite monopoles we
must also assume that the monopoles are small compared
with other scales in the problem. For the usual grand
unified theory monopoles, this approximation fails when
m2 ≲ g3B=4π. For elementary monopoles, virtual monopole
pairs will modify the photon-monopole interaction on
sufficiently short scales. We can make a simple estimate
of the scale atwhich this effect becomes significant by setting
the rest mass of a monopole pair equal to the Coulomb
attraction. This defines the scale r ∼ g2=8πm. The semi-
classical calculation of Ref. [15], which does not include this
effect, thus breaks down when the scale of the instanton
probes these short length scales, i.e., when m2 ≲ g3B=8π.
In this Letter, wewill be interested in two particular cases.

For heavy-ion collisions, the relevant temperatures are high.
When m2 ≳ g3B, the high temperatures are such that T≳ffiffiffi
2

p
π−3=4ðgB3=m2Þ1=4. In this regime the action is given by

~Sðg;m; B; TÞ ¼ 2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffi
g3B
4πm2

s !
gB
mT

: ð3Þ

When g3B=m2 is larger, it may be that the action is smaller
than that given by Eq. (3). This depends on the nature of the
phase diagram as discussed in Ref. [15]. However, the action
cannot be larger than that given by Eq. (3) and hence the rate
of pair production cannot be lower.
For neutron stars the relevant temperatures are low,

T ≪ gB=m. In this case the action is given by

~Sðg;m; B; TÞ ¼ π −
g3B
4m2

− ζð4Þ g
3B
m2

�
mT
gB

�
4

− 4ζð6Þ g
3B
m2

�
mT
gB

�
6

þO
�
mT
gB

�
8

: ð4Þ

At zero temperature, and at leading order in g3B=m2, the
prefactor of the rate (as in A in Ref. [23]) has been
calculated [16]. Together they give

Γ0 ¼ ð2sþ 1Þ g
2B2

8π3
e−ðπm2=gBÞþðg2=4Þ

�
1þO

�
g3B
m2

��
; ð5Þ

where s is the spin of the charged particle.
In a high energy heavy-ion collision a fireball is created

that thermalizes quickly and within which there are strong
magnetic fields because of the fast-moving electrically
charged nuclei [24]. The presence of both the thermal bath
and the magnetic fields means that thermal Schwinger
pair production of magnetic monopoles is possible.
However, only sufficiently light magnetic monopoles will
be produced in measurable quantities.
For a given event, with impact parameter b, the fireball

will be contained in some spacetime region RðbÞ. If the
temperature Tðx; bÞ and magnetic field Bðx; bÞ are suffi-
ciently slowly varying, then to find the total probability
pðbÞ that a pair of magnetic monopoles is produced in a
given collision, we can simply integrate the rate over the
spacetime volume of the fireball,

pðbÞ ¼
Z
RðbÞ

d4xΓT(m; g; Bðx;bÞ; Tðx; bÞ): ð6Þ

From this we can write down the cross section for pair
production

σMM̄ ¼
Z

db
dσinelHI

db
pðbÞ; ð7Þ

where dσinelHI =db is the total, differential, inelastic cross
section for the relevant heavy-ion collision. Because of the
exponential dependence of ΓT on the magnetic field and
temperature, all of these integrations can be carried out in
the stationary phase approximation. However, as we have
only calculated the logarithm of the rate to leading order in
gB=m2, we will instead make the following simple estimate

σMM̄ ≈ σinelHI VΓTðm; g; B; TÞ; ð8Þ
where V is the spacetime volume of a typical collision and
B and T are taken to be the maximum values of the
functions Bðx; bÞ and Tðx; bÞ, respectively. This expression
should capture the approximate order of magnitude of the
result.
In heavy-ion collisions there have been both direct

searches for magnetic monopoles [19] and (preliminary)
searches for trapped monopoles in obsolete parts of the
beam pipe [25]. Reference [19] reported the results of a
search at SPS for magnetic monopoles in fixed-target lead
ion collisions with a beam energy of 160A GeV. In this,
they derived an upper bound on the magnetic monopole
pair production cross section, σMM̄ < σUB

MM̄ ¼ 1.9 nb. By
comparing this with Eq. (8), we can derive a lower bound
on the mass of any possible magnetic monopoles.
Assuming that the prefactor of ΓT multiplied by V is not

exponentially large in m2=gB, we arrive at
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log

�
σinelHI

σUB
MM̄

�
≲m2

gB
~Sðg;m; B; TÞ: ð9Þ

The magnetic field strength in lead ion collisions at these
energies was estimated to be B160 GeV ≈ 0.0097 GeV2 [24].
From an analysis of the spectrum of neutral pions, the
temperature was estimated to be T160 GeV ≈ 0.185 GeV
[26]. We take σinelHI ≈ 6.3 b, the minimum-bias cross section
for the experiment [27].
Substituting Eq. (3) and the parameters into Eq. (9) leads

to the following bound on the mass of any magnetic
monopoles

m≳
�
2.0þ 2.6

�
g
gD

�
3=2
�
GeV: ð10Þ

Note that the experiment was only sensitive to magnetic
charges g ≥ 2gD.
The semiclassical approximation, made in deriving

Eq. (10), requires that the exponential suppression be large.
At the lower bound this amounts to 22 ≫ 1. The approxi-
mation of a constantmagnetic field requires that themagnetic
field varies significantly on time and length scales much
larger than those of the instanton. The instanton has a spatial
extent of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=4πB

p
≈ 18 GeV−1 for g ¼ 2gD in the direction

of the magnetic field (transverse to the beam) and a temporal
extent of 1=T ≈ 5.4 GeV−1. At SPS energies the magnetic
field varies significantly over the length and time scales of the
fireball. The transverse size of the fireball is of the order of the
size of a lead nucleus, 2RPb ≈ 100 GeV−1, which is some-
what larger than the spatial size of the instanton. The lifetime
of the magnetic field, tB ≈ 2RPb=γ ≈ 11 GeV−1, is reduced
by γ, the Lorentz factor in the center of mass frame [24]
(though it has been suggested that the lifetimemay be longer
[28]). This lifetime tB is somewhat larger than the temporal
extent of the instanton.
At higher energies one would expect to produce higher

mass magnetic monopoles, if such particles exist. The
magnetic field strength increases linearly with the center of
mass energy

ffiffiffi
s

p
[24] and the temperature increases

logarithmically [29], both effects increasing the range of
accessible masses. However, at higher energies the mag-
netic field becomes more transient and inhomogeneous, its
lifetime and thickness along the beam axis both being
proportional to 1=

ffiffiffi
s

p
. This leads to a breakdown of the

constant field approximation. To account for this, the
calculation of Ref. [15] would need to be modified. One
would expect the temporal variation of the magnetic field to
increase the rate of pair production, and the spatial variation
to decrease it [30].
There is promise for magnetic monopole searches in the

next scheduled Pb-Pb collisions at the LHC in 2018, at
which ALICE, ATLAS, CMS, LHCb, and MoEDAL may
be able to detect monopoles. The trapping detectors of

MoEDAL are ideally suited for this because they have no
background noise [11]. Let us make the simple, though
perhaps naive, assumption that the rate derived for a
constant magnetic field provides a lower bound on the
true rate. Using the magnetic field B ≈ 1.1 GeV2 and the
integrated luminosity Lint ≈ 4 μb−1 from the 2015 lead ion
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [31] and the temperature
T ≈ 0.30 GeV, and the cross section σinelHI ≈ 7.7b from the
lower energy collisions in 2010–2011 [32,33], and assum-
ing an acceptance of Oð10−4Þ, we would predict that
magnetic monopoles with masses up to approximately
½1þ 28ðg=gDÞ3=2� GeV could be experimentally observed.
Note that magnetic monopole pair production in heavy-

ion collisions has been discussed before [34]. Those
authors also consider thermal production, though they do
not include the effect of the magnetic field.
There are also strongmagnetic fields andhigh temperatures

in neutron stars. Magnetic fields have been estimated to be up
to BMagnetar ≈ 10−4 GeV2 [35] for the so-called magnetars.
The temperatures of such neutron stars lie in the range of 10−8

to10−6 GeV formost of the stars’ lifetime, though in the early
stages they can be as high as 10−2 GeV [36].
Magnetic monopoles present in such circumstances

would be accelerated by the magnetic field, thuswise
dissipating its energy. A calculation of this effect can be
used to put upper bounds on the number density of
magnetic monopoles [6,37]. We can go a step further
and equate the number density to that produced by thermal
Schwinger pair production, and thuswise bound the mass of
any magnetic monopoles.
The magnetic field of a neutron star can be approximated

as dipolar [38]. We focus on the magnetic fields above the
surface of the star, which are fairly well established. We
assume that on the microscopic scale m=gB the magnetic
field can be treated as constant. Note that, due to the
superconducting core, the internal magnetic fields would
be confined in flux tubes increasing the field strength locally
and enhancing the production rate. Hence, a consideration of
the interior of the neutron star may lead to stronger bounds
[37], though one would need to consider interactions
between magnetic monopoles and matter particles [39].
We consider typical neutron star mass and radius

parameters MNS ¼ 1.4 M⊙ and R ≈ 1.0 × 1020 GeV−1,
respectively. At the surface of the star, where the gravita-
tional field is strongest, the ratio of gravitational to
magnetic forces on such a magnetic monopole is

FG

FB
≈
GNMNSm
gBR2

≈ 7.14 × 10−19
�
gD
g

��
m

GeV

�
; ð11Þ

where GN is Newton’s constant. So, for magnetic monop-
oles with masses much less than 1019 GeV, the magnetic
force dominates over the gravitational one. In this regime
magnetic monopoles will be accelerated by the magnetic
field over a time scaleOðm=gBÞ to nearly the speed of light
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and will escape both the gravitational attraction of the star
and the dipolar magnetic field, leaving with a kinetic
energy OðgBRÞ.
Locally, the energy density of the magnetic field and

thermal bath act as a source of magnetic monopoles. If the
density of magnetic monopoles is low enough, which indeed
it will turn out to be, we can ignore their annihilation and
hence

∇μnμ ¼ ΓT; ð12Þ
where nμ ≔ ncuμ, nc is the (comoving) number density of
magnetic monopoles, and uμ is their fluid velocity. Now
consider a spatial region above the surface of the neutron star,
small enough so that across it the magnetic field and
temperature can be treated as approximately constant but
large enough so that its spatial dimensions are all large
comparedwith the low temperature instanton sizem=gB.We
denote the area of the surface by A and the volume by V.
Integrating Eq. (12) over this spatial region gives

dN
dt

≈ VΓT − fAnu; ð13Þ

where N ¼ nV is the number of magnetic monopoles in the
spatial region, n ≔ n0 is the number density measured in the
frame of the neutron star, u is the spatial velocity in the same
frame, and f is a numerical coefficient of order 1, the fraction
of the surface area through which magnetic monopoles may
escape. The magnetic current will be aligned with the
magnetic field and u ≈ 1.
At equilibrium, the rate of change of N with time will be

zero; hence, the number density of magnetic monopoles is
equal to

n ≈
VΓT

fA
: ð14Þ

We define by r ≔ V=fA, the coefficient in front of ΓT ,
which is of the order of the radius of the spatial region. The
presence of the magnetic monopoles, being accelerated by
the magnetic field, will dissipate the energy of the magnetic
field at a rate

d
dt

�
1

2
B2

�
¼ −JM ·B; ð15Þ

where JM ¼ gnu. Using that JM ·B ≈ gnB and Eq. (14)
this simplifies to

dB
dt

≈ −grΓT: ð16Þ

This dissipation will provide a ceiling for the growth of the
magnetic field. Consider the fast dynamo process, argued in
Ref. [40] to be responsible for the strong magnetic fields in
magnetars. In the presence of this process the rate of change
of the magnetic field is modified to

dB
dt

≈ −grΓT þ B
2τD

; ð17Þ

where τD is the characteristic enhancement time of the
dynamo. For sufficiently small magnetic fields the rate ΓT
is strongly exponentially suppressed and the dynamo action
dominates. Conversely, the exponential dependence of ΓT
on B means that ΓT will always dominate at sufficiently
large values of B. In between is the point of maximum B, at
which the two effects are equal and the right-hand side of
Eq. (17) is zero. This argument is sound if the semiclassical
approximation still holds at this point.
The rate ΓT is bounded below by the rate at zero

temperature, Eq. (5). Thus, we may use this to bound
the effect of the dissipation of B due to the creation of
magnetic monopoles. Equating the right-hand side of
Eq. (17) to zero, and using this zero temperature rate,
we derive the following bound

B≲ πm2

gWðeðg
2=4Þð2sþ1Þg2m2rτD

4π2
Þ
; ð18Þ

where W is the principal part of the Lambert-W function.
Inverting the argument that led to the maximum magnetic
field, we may use the observation of a strong magnetic field
to give a lower bound on the mass of possible magnetic
monopoles

m≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB
π

�
g2

4
þ log

�ð2sþ 1Þg3BrτD
4π3

��s
: ð19Þ

So, the largest bounds will be found from the observation of
strong magnetic fields B existing over large spatial extents r
and created by processes with long characteristic times τD.
Note though that the dependence on s, r, and τD is only
logarithmic and hence the dependence on B dominates.
If we take r ≈ R, the radius of the neutron star, and τD ≈

1.5 × 1024 GeV−1 (1 sec, a short characteristic dynamo
time) and B ≈ BMagnetar, we derive the following lower
bounds: m≳ 0.31 GeV for g ¼ gD and m≳ 0.70 GeV for
g ¼ 2gD. If there were to exist magnetic monopoles lighter
than these lower bounds, their production and acceleration
would strongly dissipate the magnetic field before it could
ever reach BMagnetar. Note that for the bounding values the
exponential suppression is numerically about 97 ≫ 1, and
hence the semiclassical approximation is valid.
A similar approach to what we have presented here was

given recently in Ref. [41], though those authors considered
somewhat different types of particles.
From the arguments of this Letter, magnetic monopoles

with masses below those indicated in Fig. 1 cannot exist in
nature. Our key approximations, that the relevant magnetic
fields are weak and slowly varying, are more or less
justified. Future higher energy heavy-ion collisions can
improve these bounds significantly though, at higher
energies, accounting for the spacetime dependence of the
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magnetic field requires further theoretical work. In neutron
stars, a consideration of the superconducting regions below
the surfacemay lead to significant improvements in the lower
mass bounds, though in this case monopole-matter inter-
actionswould have to be accounted for. The calculation ofΓT
could be improved by computing the prefactor. For high
temperatures this could first be done for m2 ≫ g3B, where
the nonrelativistic approximation is valid.
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