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2Laboratoire de Physique Statistique, Département de physique de l’ENS, Ecole Normale Supérieure, PSL Research University,
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We study the continuous one-dimensional hard-spheremodel and present irreversible localMarkov chains
that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales
appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The
event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting
the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains
correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two
universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and
by a faster variant (lifted TASEP) that we propose here.We discuss how our irreversible hard-sphereMarkov
chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the
concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
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The hard-sphere model plays a central role in statistical
mechanics. In three spatial dimensions (3D), the classical
hard-sphere crystal melts in a first-order phase transition
[1], whereas 2D hard spheres undergo a sequence of two
phase transitions that have been characterized only recently
[2,3]. Hard spheres have established paradigms for order-
from-disorder phenomena driven by the depletion inter-
action [4,5] and for 2D melting with its dissociation of
orientational and positional order [6]. The dynamics of the
hard-sphere model has also been the focus of great
attention, from the first algorithmic implementation of
Newtonian mechanics through event-driven molecular
dynamics [7] and the discovery of algebraically decaying
velocity autocorrelations [8] to insights into the glass
transition [9] and granular materials [10], and from the
first definition of Markov-chain Monte Carlo dynamics
[11] to rigorous convergence rates towards equilibrium in
some special cases [12].
In 1D, the thermodynamics and the static correlation

functions of finite hard-sphere systems can be computed
exactly [5,13]. Newtonian dynamics is pathological for
equal sphere masses, because colliding spheres simply
exchange their velocities without mixing them. Stochastic
dynamics, however, may converge to equilibrium. For
example, reversible heat bath dynamics mixes (that is,
converges towards equilibrium from an arbitrary starting
configuration) in at most ∼N3 logN individual steps for N
spheres [14].
In the present Letter, we study irreversible local Markov

chains for 1D hard-sphere systems that violate the detailed-
balance condition yet still converge towards equilibrium.
We show, by numerical simulation, that these irreversible
Markov chains typically mix faster than reversible ones,

and that they fall into two universality classes (see the
Supplemental Material Section I [15] for background
on balance conditions and the Supplemental Material
Section II [15] for details on mixing and correlation times).
The first one mixes in OðN5=2Þ steps, and is related to the
totally asymmetric simple exclusion process (TASEP, see
[16–18]). The other mixes in OðN2 logNÞ and comprises
the event-chain algorithm (ECMC) [19] and a modified
lifted TASEP that we propose in this Letter. We refer to it as
the lifted TASEP class. The framework for our approach to
irreversible Markov chains is provided by the lifting
concept [20,21] together with a factorized Metropolis
acceptance rule [22] which considerably extend the range
of applications for irreversible Markov chains (see Ref. [23]
for a review). Some evidence for reduced mixing time
scales has already been obtained [24].
In order for a reversible or irreversible Markov chain to

converge to the thermodynamic equilibrium given by π, the
total probability flowF a into a configuration amust satisfy
the global balance condition

F a ≡
X
b

πðbÞTðb → aÞ ¼ πðaÞ; ð1Þ

where Tðb → aÞ is the algorithmic transition probability
from b to a. In the following, we distinguish between
“accepted” flow Aðb → aÞ ¼ πðbÞTðb → aÞ from confi-
gurations b ≠ a to a and “rejected” flowR¼πðaÞTða→aÞ
which results from an attempted move from a that was not
accepted. The global balance condition enforces stationar-
ity of π under multiplication with the transfer matrix T (see
the Supplemental Material Section I [15] for definitions).
The special condition realized in reversible Markov chains
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is the detailed balance πðbÞTðb → aÞ ¼ πðaÞTða → bÞ
which, in terms of the probability flows, is simply
Aða → bÞ ¼ Aðb → aÞ, and which implies Eq. (1).
For concreteness, we restrict ourselves to N hard spheres

of diameter d on a circle of length L, so that the free space is
Lfree ¼ L − Nd, and the mean gap between spheres is
lfree ¼ Lfree=N. All valid configurations a have the same
statistical weight πðaÞ ¼ 1. They consist in ordered particle
positions a ¼ ð…; xi−1; xi; xiþ1;…Þ with gap variables
δi ¼ xi − xi−1 − d ≥ 0 and appropriate periodic boundary
conditions. The partition function Z ∼ ðLfreeÞN is analytic
for all densities in the thermodynamic limit, and no phase
transition takes place [5,13]. The model is isomorphic to N
point particles on a circle of length Lfree with the same
gap variables and an interaction Vðδi < 0Þ ¼ ∞ and
Vðδi ≥ 0Þ ¼ 0 implementing both the nonoverlap and
the ordering constraint. Because of this mapping onto a
gas of free particles with mean gap lfree, and because the
step size distribution of our Markov chains scales with lfree,
their dynamics and, in particular, their mixing times do not
depend on density (see the Supplemental Material
Section III [15] for details). Nevertheless, the spatial
correlation length of the hard-sphere model diverges in
the close-packing limit.
First, we consider the reversible heat bath algorithm,

which moves at each time step t ¼ 0; 1;… a random sphere
i to a random position between spheres i − 1 and iþ 1
[xi is uniformly sampled in ðxi−1 þ d; xiþ1 − dÞ]. When
studying the mixing dynamics, we ignore trivial uniform
rotations of the configuration (which only mix in ∼N4 steps
[14]). Thus, we restrict our attention to quantities that can
be expressed in terms of the δi and focus on the slow, large-
scale density fluctuations. The reversible heat bath algo-
rithm is known to mix in at most ∼N3 logN steps.
We assume that the slowest time scale is exposed by
tracking the distribution πðuiÞ of any half-system distance
ui ¼ δi þ δiþ1 þ � � � þ δiþN=2 from a compact initial con-
figuration at t ¼ 0, where the variance of ui equals
Varui ¼ Lfree

2=4, towards equilibrium at t ∼ τmix, where
Varui ¼ Lfree

2=ð4N þ 4Þ (see the Supplemental Material
Section II [15] for details). Our simulations, indeed, show,
in agreement with the rigorous bounds [14], that ∼N3 steps
are insufficient for mixing [see Fig. 1(a)], while ∼N3 logN
steps suffice [see Fig. 1(b)]. The diverging slope of Varui
at τmix signals the cutoff phenomenon [25]. Our method
also recovers the correct mixing time for the related dis-
crete symmetric simple exclusion process (SEP) model
(see below). For this model, the leading term of τmix is
known rigorously [26] and scales as N3 logN (notwith-
standing the absence of the logarithm in the spectral gap).
Thus, our numerical method reliably detects mixing times,
including logarithmic corrections and prefactors.
Plots analogous to Figs. 1(a) and 1(b) obtain the mixing

time scales for all Markov chains studied in the present
Letter [see Fig. 1(c)]. For the heat bath algorithm, a simple

scaling argument for the discrete lowest-k Fourier mode
Ū ¼ ðu1 þ u2 þ � � � þ uN=2Þ=N3=2 yields the OðN3Þ
behavior in equilibrium: In the limit N → ∞, the standard
deviation of πðŪÞ is Oð1Þ, and one heat bath step changes
Ū by Oð1=N3=2Þ. A random walk in t yields

1

N3=2

ffiffi
t

p
∼ 1 ⇒ τmix ≳ N3: ð2Þ

The reversible Metropolis algorithm mixes on the same
OðN3 logNÞ scale as the reversible heat bath algorithm [see
Fig. 1(c)]. At each step, it considers a move from a towards
a configuration ~a with ~xi ¼ xi þ σε, where σ ¼ �1 sam-
ples the forward or backward direction and ε > 0 samples
the step from some distribution pðεÞ (we use a uniform
distribution on the interval [0; 2.5lfree]). If ~a is invalid
because of an overlap or an inversion of xi with xi−1 or xiþ1,
the move a → a results. The reversible Metropolis algo-
rithm satisfies detailed balance between a and any ~a simply
because the moves ~a → a and a → ~a are equally likely.
The probability flow F a into a has four components for

each sphere i (see Fig. 2), namely, accepted forward flow
Aþ

i ¼ R
dεpðεÞAþ

i ðεÞ, corresponding to σ ¼ þ1 and
analogously accepted backward flow A−

i for σ ¼ −1.
Rejected forward and backward flows Rþ

i and R−
i from

a towards invalid configurations ~a also contribute to the
flow into a. For given ε, these flows

Aþ
i ðεÞ ¼ Θðδi − εÞ; Rþ

i ðεÞ ¼ Θðε − δiþ1Þ;
A−

i ðεÞ ¼ Θðδiþ1 − εÞ; R−
i ðεÞ ¼ Θðε − δiÞ; ð3Þ

with Θ the Heaviside step function, are either unity or zero.
Moreover, they add up to unity in pairs: Aþ

i ðεÞ þR−
i ðεÞ ¼

1, A−
i ðεÞ þRþ

i ðεÞ ¼ 1, because each move is accepted (or

106

108

1010

τmix

Heatbath

Seq. Heatbath

Metropolis

Seq. Metropolis

Forward Metropolis

Lifted Metropolis (w/o rest.)

Lifted Metropolis (with rest.)

Event-chain

N 102 103 104

0

2

4

0.00 0.02 0.04

V
ar

 u

t  / (N 3 logN )

0

2

4

0.0 0.1 0.2

(a)
N 

(b)

(c)
N 3 logN N 5/2 N 2 logN 

V
ar

 u

t  / N 3

FIG. 1. Mixing of local 1D Markov chains. (a) Relaxation of
Varui from the compact initial state under heat bath dynamics
(x axis rescaled byN3, y axis by equilibrium value). (b) Rescaling
of x axis with an additional logarithm illustrates OðN3 logNÞ
time scale. (c) Mixing times for the Markov chains discussed in
this Letter. The step ε is uniformly sampled from (0; 2.5lfree).
For the event-chain algorithm, τmix is measured in lifting moves.
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rejected) under the same condition as its return move. It
follows that, for any distribution of ε, the sum of the four
flows equals 2.
Global balance requires the total flow F a into a valid

hard-sphere configuration a to equal πðaÞ ¼ 1. For the
reversible Metropolis algorithm, there are 2N equal choices
of the N spheres and two directions σ ¼ �1, so that

F rev
a ¼ 1

2N

X
i

ðAþ
i þRþ

i þA−
i þR−

i Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼2; see Eq:ð3Þ

¼ 1:

Thus, global balance is established, although it was already
implied by the detailed-balance condition.
Global balance is also satisfied for the sequential

Metropolis algorithm, the historically first irreversible
Markov chain [11], which updates spheres sequentially,
say, in ascending order in i. At a given time, only a fixed
sphere i is updated, and the flow into a configuration a
during this move arises from the two choices σ ¼ �1 for
this update of i, which each can be either accepted or
rejected

F seq
a ¼ 1

2
ðAþ

i þRþ
i þA−

i þR−
i Þ ¼ 1: ð4Þ

Irreducibility and aperiodicity can also be proven for
generic distributions pðεÞ. With pðεÞ uniform in the
interval [0, 2.5lfree], the sequential Metropolis algorithm
mixes ∼1.2 times faster than the reversible Metropolis
algorithm, but with the same OðN3 logNÞ scaling.
The relation Aþ

i ðεÞ þR−
i ðεÞ ¼ 1 from Eq. (3) can be

expressed as Aþ
i ðεÞ þRþ

i−1ðεÞ ¼ 1. This motivates the
forward Metropolis algorithm, which attempts, at each
time step, a forward move (σ ≡þ1) sampled from the
probability distribution pðεÞ, for a randomly sampled
sphere i. There are now N equal choices for the moves,
and the incoming flow into a configuration a is given by

F forw
a ¼ 1

N

X
i

ðAþ
i þRþ

i−1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼1

¼ 1; ð5Þ

which, again, establishes global balance. In contrast, the
sequential forward Metropolis algorithm violates global
balance. In this algorithm, at a given time step, a fixed

sphere i is updated, and the flow F seq−forw
a into a configu-

ration a, at this time step, arises for a given value ε from a
single possible move. The total flow is F seq−forw

a ¼
Aþ

i þRþ
i ≠ 1, so that the sequential forward algorithm

is not correct.
Remarkably, we find that the forward Metropolis algo-

rithm mixes on a time scale OðN5=2Þ [see Fig. 1(c)]. The
same N5=2 time scale also governs the relaxation of the
TASEP, a lattice transport model which converges to
equilibrium under periodic boundary conditions [18]. An
individual TASEP step attempts to move a randomly
sampled sphere one site to the right [Fig. 3(a)]. Indeed,
the TASEP agrees with the forward Metropolis algorithm
restricted to integer xi and L and steps ε≡ 1. By tracking
the lattice equivalent of Varui, we recover the OðN5=2Þ
mixing for the TASEP [18], while the symmetric SEP, itself
the lattice version of the reversible Metropolis algorithm,
mixes in ∼N3 logN [26].
The relation Aþ

i ðεÞ þRþ
i−1ðεÞ ¼ 1, for any individual i

[see Eq. (6)] provides the motivation for the lifted
Metropolis algorithm. Here, moves are attempted in the
forward direction σ ≡þ1, but the active sphere i at time
step tþ 1 is determined from the outcome at time step t
[see Fig. 3(b) for the discretized example]: As long as
sphere i can move, it remains active for the next step. Only
when it cannot move, a lifting move i → iþ 1 takes place,
instead, and iþ 1 becomes the active sphere (the physical
configuration a does not change during this step). Each
configuration is now characterized by the active particle i,
in addition to a. The incoming flow F lift

ða;iÞ into a lifted
configuration (a, i) is either due to an accepted move of i or
a rejected move of i − 1, so that

F lift
ða;iÞ ¼ Aþ

i þRþ
i−1 ¼ 1: ð6Þ

Global balance again holds. We find that the lifted Metro-
polis algorithm, run as a Markov chain without restarts (see
below) mixes in OðN5=2Þ steps [see Fig. 1(c)]. Thus, it
belongs to the TASEP universality class.
Balance conditions relate the stationary probability

distribution π at time step t to the distribution at time step

FIG. 2. Metropolis flow into configuration a by moves of
sphere i. For given ε, ½A�

i ðεÞ;R∓
i ðεÞ� ∈ f½1; 0�; ½0; 1�g as a move

by ε is either accepted or rejected. Flows here are integrated over
the step distribution pðεÞ. The relation ½Aþ

i ðεÞ;Rþ
i−1ðεÞ� ∈

f½1; 0�; ½0; 1�g justifies the forward Metropolis algorithm.
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FIG. 3. Update rules for discrete models. (a) The TASEP
advances a random sphere, if possible, and it mixes in
OðN5=2Þ. (b) The lifted TASEP, without restarts, is deterministic.
With restarts, it mixes in OðN2 logNÞ.
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tþ 1, which must agree. For the reversible Metropolis
algorithm, as discussed, this condition is satisfied for any
sequence of i [see Eq. (5)]. If run for a finite number of
steps, the lifted Metropolis algorithm is correct only if
started from a random position i. It is advantageous to
restart this algorithm after λ ∼ N time steps by resampling
the active sphere i. The chain length λ could also be
random, sampled from an appropriate distribution; see the
Supplemental Material Section IV [15] for details. We then
observe mixing on a time scale OðN2 logNÞ, much faster
than all previous Markov chains [see Fig. 1(c)]. TheOðN2Þ
time scale is again brought out by a scaling argument for
the discrete Fourier mode Ū: One chain (sequence of ∼N
moves between restarts) of the lifted Metropolis algorithm
can change Ū by Oð1=N1=2Þ. This change is of random
sign. A random walk in t=N then yields τmix ≳ N2. Indeed,
simulations show that restarts every λ ∼ N time steps yield
the fastest mixing [see Fig. 4(a)] and outpace restarts with
other scalings with N [see Fig. 4(b), and below].
The lifted Metropolis algorithm also has a discrete

counterpart in the lifted TASEP [see Fig. 3(b)]: A single
sphere (occupied lattice site) is active and attempts to
advance in a forward direction. The sphere remains active
if its move is accepted. Otherwise, the lifting index advances
to the right-hand neighbor site. The lifted TASEP satisfies
global balance, but, without restarts, fails to be irreducible.
With restarts everyOðNÞ steps, the lifted TASEP also mixes
on anOðN2 logNÞ time scale. The infinitesimal limit of the
liftedMetropolis algorithm, ε → 0, is the ECMC,which also
mixes in OðN2 logNÞ lifting moves [see Fig. 1(c)]. Thus, it
also belongs to the lifted TASEP universality class.
The dynamical universality classes for local 1D hard-

sphere algorithms are summarized in Table I. In the lifted
TASEP universality class, each sphere only moves
OðN logNÞ times to reach equilibrium, almost saturating
the lower bound, as OðNÞ are required to detach each
sphere from the compact initial state.

The irreversible Markov chains presented here are best
viewed from their deterministic roots, both on the lattice
and in the continuum. Indeed, the lifted TASEP without
restarts is a deterministic lattice-gas automaton satisfying
global balance, rather than a Markov chain [see Fig. 3(b)].
Irreducibility and aperiodicity call for an element of
randomness that can be supplied by restarts. Here, λ ∼ N
(lifted TASEP) and λ≡ 1 (TASEP) represent different
universality classes. In the continuum, the deterministic
root is an algorithm without restarts and invariant step ε,
which satisfies global balance. All presented Metropolis-
type Markov chains may be obtained from this root by
resampling of i or ε. Algorithms belong to different
universality classes, depending on the resampling rate:
Resampling ε at every step leads to the lifted Metropolis
algorithm without restarts which is in the TASEP class. The
additional resampling of i every λ ∼ N time steps yields the
lifted Metropolis algorithm with restarts, which is in the
lifted TASEP class [see Fig. 4(a), the oscillations suggest
that resamplings should ideally correspond to ∼N=2
successfully moved spheres and that multiples of N should
be avoided]. More infrequent restarts (λ ∼ N2) or more
frequent ones (λ ∼ N1=4) lead back to the nonlifted TASEP
class [see Fig. 4(b)]. Numerical computations of the
asymptotic mixing time scales for λ ∼ Nα with α only
slightly different from 1 will require very large system sizes
in order to overcome the oscillations at α ¼ 1.
Injecting randomness with a rate ∼1=N is, thus, optimal

for mixing. A particular limit of the continuum root
algorithm is the ECMC without restarts. In 1D, it agrees
with Newtonian dynamics with a single sphere of nonzero
velocity, and never mixes. Resampling i with rate ∼1=N
(corresponding to an occasional restart of Newtonian
dynamics) turns the deterministic dynamics into a very
fast local algorithm, the ECMC, which is in the lifted
TASEP class, and mixes in OðN2 logNÞ lifting moves [see
Fig. 1(c)].
The infinitesimal displacements of the ECMC are crucial

for its generalization to situations where particles simulta-
neously interact with several others, such as in more than
1D, or due to long-range forces. This generalization calls
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TABLE I. Mixing time scales for local 1D hard-sphere algo-
rithms on the continuum and on the lattice. The Markov chains on
the lowest row all incorporate restarts. See the Supplemental
Material Section IV [15] for pseudocode implementations.

Local 1D hard-sphere Markov chains Mixing
time scaleContinuous Discrete

Heat bath [14],
Metropolis

Symmetric
SEP [26]

N3 logN

Forward and lifted
Metropolis without restarts

TASEP [18] N5=2

Event-chain, lifted Metropolis Lifted TASEP N2 logN
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for the factorized Metropolis algorithm [22,27,28]. The
finite-step lifted Metropolis algorithm remains correct for
repulsive interactions restricted to nearest neighbors.
Indeed, soft repulsive particles with a 1=x12 potential
reproduce the mixing behavior of hard spheres, with
OðN2 logNÞ mixing for the lifted Metropolis and
OðN5=2Þ mixing for lifted Metropolis without restarts
(see the Supplemental Material Section V [15] for details).
The ECMC has been applied successfully (see Ref. [23] for
a review), but prior to the present Letter, its mixing
behavior was not characterized in detail, beyond some
partial evidence for faster mixing time scales [24].
In the future, it will be important to clarify how the

different universality classes identified in the present Letter
carry over to higher dimensions and to what degree they
depend on the asymmetry of the step distribution. Exact
solutions of some of the models in Table I may be possible.
This would help establish the conceptual framework of
lifting and of irreversible Markov chains beyond the single-
particle level [21]. More generally, the mixing dynamics of
hard spheres from an initial compact state may be inter-
preted as the equilibration process of a physical system in
response to a sudden change in its Hamiltonian at time
t ¼ 0. The analysis of the asymmetric evolution of shock
fronts may shed further light on the new universality class,
as previously for the well-studied TASEP class. An
example for a system strongly out of equilibrium, it will
be interesting to study how entropy production differs
between the three universality classes, and how they may
be integrated within the nonequilibrium fluctuation theo-
rems [29,30].
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