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The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics,
ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H
theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a
search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving
a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by
assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an
inequality. This inequality is solved by creating a new framework for construction of Padé approximants
via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy
in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex
mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have
simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 × 106.
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The lattice Boltzmann model (LBM) is an efficient
kinetic formulation of nonlinear hydrodynamic phenomena
in terms of a discrete set of populations restricted on lattices
with appropriate symmetries [1–11]. The Navier-Stokes
dynamics emerges from this kinetic model by an appro-
priate choice of discrete equilibrium that respects macro-
scopic constraints [12–16]. Historically, the approach of
choosing the equilibrium from macroscopic dynamics in
the LBM emerged as a computationally attractive alter-
native to the Boolean particle dynamics of the lattice gas
model [12–14,17,18]. However, this top-down approach of
the LBM lost many desirable features of the lattice gas such
as the H theorem and consequently the faithful represen-
tation of microscopic Boltzmann dynamics [2,3]. The
absence of discrete time H-theorem results in the growth
of numerical instabilities in standard LBM. This often
makes simulations with low viscosity and/or large spatial
gradients for hydrodynamics and large density ratios for
multiphase flows unstable [2,3,5].
The entropic lattice Boltzmann model (ELBM) restores

the H theorem for discrete space-time evolution [2,3,19–
24]. Its introduction was a paradigm shift for computational
fluid dynamics where the numerical stability of a hydro-
dynamic solver was enforced by insisting on adherence to
the thermodynamics at the discrete time level [3]. The H
theorem in the ELBM requires an additional step of numeri-
cally searching for the maximal discrete path length which
corresponds to a jump to a mirror state on the isoentropic
surface (zero dissipation state). Considerable efforts have
been made to ensure the correctness and efficient imple-
mentation of this step [25–29]. However, there is scope for
better theoretical understanding of the solution provided by
the ELBM.For example, an implicit modeling of unresolved

scales of the flow, via the thermodynamic route,may provide
a new insight into subgrid modeling of turbulence. Such an
understanding will also help enhance the efficiency of the
ELBM and resolve ambiguities in its implementation. For
the rare events when the isoentropic surfaces are partially
outside the polytope of positivity, the entropic involution
step has no solution and, hence, there is no unique definition
of the path length [29].
In this Letter, we reformulate the ELBM and obtain a

closed form analytic solution for the discrete path length.
The essential idea is to relax the entropy equality condition
used in the ELBM and replace it with the constraint that
entropy must increase within a discrete time step. We show
that near equilibrium this exact solution reduces to the
standard LBM. The simplicity of the exact solution
removes the computational overhead and algorithmic
complexity associated with the ELBM.
Before presenting our exact solution, we present a brief

review of the LBM and its entropic formulation in D
dimensions. In the LBM, one defines a set of discrete
velocities ci, i ¼ 1;…; N such that they form links of a
space-filling lattice [1] and at every lattice node x and time
t a set of discrete populations fðci;x; tÞ≡ fi. We also
define the inner product between two functions of discrete
velocities ϕ and ψ as hϕ;ψi ¼ P

N
i¼1 ϕiψ i. The hydro-

dynamic variables such as the mass density ρ, velocity u,
and the temperature T are defined as

ρ¼ hf;1i; ρu¼ hf;ci; ρu2 þDρRT ¼ hf;c2i;
ð1Þ

where R is the gas constant. The evolution for populations
after a time step Δt is written as a two-step process of
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discrete free flight fiðxþ ciΔt; tþ ΔtÞ ¼ f�i ðx; tÞ and the
collisional relaxation towards discrete equilibrium often
modeled by a single relaxation model of Bhatnagar, Gross,
and Krook (BGK) [30] with mean free time τ as

f�i ðx; tÞ ¼ fiðx; tÞ þ αβ½feqi ðx; tÞ − fiðx; tÞ�; ð2Þ

where the path length α ¼ 2 and β ¼ Δt=ð2τ þ ΔtÞ is a
dimensionless parameter bounded in the interval 0 < β < 1
(β ¼ 1 is the dissipationless state). The local equilibrium
distribution feqi is a minimizer of the convex entropy
function H, typically taken in Boltzmann form [2,20,31]
HðfÞ ¼ hf; ðlog ðf=wÞ − 1Þi, with weights wi > 0 under
the constraint that the mass density, the momentum density,
and the energy density (ignored in isothermal models) are
fixed [2,20,31]. In this Letter, exact equilibrium is found
numerically at every grid point.
The ELBM introduces the concept of state-dependent

path length α for the discrete collision step [2]. The depen-
dence on the local state is introduced in terms of the equal
entropy mirror state fmirror ¼ f þ αðfeq − fÞ, which is
found by iteratively solving the nonlinear equation [25,26]

HðfmirrorÞ ¼ HðfÞ: ð3Þ

Figure 1 shows that beyond the fmirror state H increases
along the collision path and thus α corresponds to the
maximal path length. TheH theorem for the discrete dynam-
ics, Hðf�Þ < HðfÞ, is ensured by searching point fmirror as
β < 1. In a well-resolved simulation, the dimensionless
departure from the equilibrium xi ¼ ðfeqi − fiÞ=fi is small
(jxij ≪ 1). Hence, Eq. (3) simplifies to HðfmirrorÞ−HðfÞ¼
hf;ð1þαxÞlogð1þαxÞi−αhf;xlogð1þxÞi. Expanding the
logarithms about xi ¼ 0 using Taylor series one obtains
HðfmirrorÞ −HðfÞ ¼ αðα=2 − 1Þhf; x2i þOðx3Þ. Thus,
close to equilibrium, the nontrivial root for HðfmirrorÞ ¼
HðfÞ is α ¼ 2, which corresponds to the standard LBM.

Finally, we note that the involution step has no solution when
the isoentropic surfaces are partially outside the polytope of
positivity (entropy level H1 in Fig. 1) [29].
We now present an alternate construction of the ELBM

where the discrete path length α has no indeterminacy. The
key idea is to obtain α by directly considering the natural
criterion of monotonic decrease of the H-functional with
time. This implies solving an inequality

ΔH ≡Hðf�Þ −HðfÞ ≤ 0; ð4Þ

which using Eq. (2) is rewritten as

ΔH ≡ hf; ð1þ α̂xÞ log ð1þ α̂xÞ − α̂x logð1þ xÞi; ð5Þ

where α̂ ¼ αβ. The inequality, by construction, accepts
multiple solutions. For example, when α ≤ 1 the inequality
is trivially satisfied as the new state is a convex combination
of the old state and the equilibrium [23]. However, one is
interested in over-relaxed collision, where the new state is
no longer a convex combination of the old state and
equilibrium. This corresponds to the real solutions of
Eq. (4) in the range 1 < α < ∞ [2]. As in the ELBM,
the solution should reduce to the standard LBM close to
equilibrium (α ¼ 2). Indeed, the present methodology is
valid for both discrete velocity models of the LBM as well
as the continuous in velocity Boltzmann-BGK equations,
where the summation in the inner products needs to be
replaced by appropriate integrals.
In order to find αmax that satisfies ΔH ≤ 0, we need to

provide bounds on logð1þ yÞ. For y ∈ ð−1; 0Þwe consider
the Taylor series of logð1þ yÞ ¼ P∞

k¼1ð−1Þkþ1yk=k where
each term of the series is negative, hence, any finite
truncation will be larger than logð1þ yÞ, i.e.,

logð1þ yÞ <
XN
k¼1

ð−1Þkþ1
yk

k
: ð6Þ

In the subsequent lines, we point out certain lesser known
inequalities pertaining to logð1þ yÞ and its Padé approx-
imants. A crucial insight at this point comes from under-
standing Padé approximants of logð1þ yÞ as approximate
integral

R y
0 FðzÞdz, where FðzÞ ¼ 1=ð1þ zÞ. The integral

is approximated via Newton-Cotes (NC) and Gauss-
Legendre (GL) quadrature which allows us to provide
bounds on logð1þ yÞ as the related residues are well under-
stood. From nth order Newton-Cotes quadrature

R y
0 FðzÞ ¼

I ðnÞ
NCðyÞ − p1Fð2nÞðξÞ and from Gauss-Legendre quadratureR y
0 FðzÞ ¼ I ðnÞ

GLðyÞ þ p2Fð2nÞðξÞ where p1, p2 are positive
and Fð2nÞðξÞ is 2nth derivative of FðzÞ at a point ξ inside the
domain [Fð2nÞðξÞ > 0 owing to the convex nature of FðzÞ].
Figure 2 shows that for the Newton-Cotes quadrature the
residues are positive and their magnitude progressively
decreases with an increase in the order of quadrature. The

FIG. 1. The entropic involution step: Hi are different entropy
levels (H1 > H2 > H3). Triangle denotes the polytope of pos-
itivity. Note that the precollisional state f and the mirror state
fmirror are at the same entropy level. The postcollisional state f� is
at a lower entropy level.
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same can be said about the Gauss-Legendre quadrature,
where the residues are negative.
The first-order approximations form the Hermite-

Hadamard inequality

F

�
y
2

�
≤
1

y

Z
y

0

FðzÞdz ≤ 1

2
½Fð0Þ þ FðyÞ�; ð7Þ

where the latter inequality is a consequence of the trapezoid
rule (see Fig. 2) and the former is proved using convexity
arguments in the Supplemental Material [32]. Stricter
bounds on logð1þ yÞ are constructed by approximating
via higher-order quadratures, hence, we obtain an extended
version of the Hermite-Hadamard inequality for y ∈ ½0;∞Þ

I ð1Þ
GLðyÞ ≤ I ð3Þ

GLðyÞ ≤ logð1þ yÞ ≤ I ð3Þ
NCðyÞ ≤ I ð1Þ

NCðyÞ; ð8Þ

where I ð1Þ
NCðyÞ¼ðyþy2=2Þ=ð1þyÞ, I ð1Þ

GLðyÞ ¼ 2y=ð2þ yÞ,
I ð3Þ
NCðyÞ ¼ ½7y þ 128y=ð4 þ yÞ þ 48y=ð4 þ 2yÞ þ 128y=

ð4 þ 3yÞ þ 7y=ð1 þ yÞ�=90, I ð3Þ
GLðyÞ ¼ ð60y þ 60y2þ

11y3Þ=ð60 þ 90y þ 36y2 þ 3y3Þ.
To find the exact solution, we further introduce a

decomposition of distributions f in terms of the departure
from equilibrium as Ωþ ¼ ffi∶xi ≥ 0g and Ω− ¼ ffi∶ −
1 < xi < 0g [33]. The lower bound of xi in Ω− comes from
the limiting case of the total mass being localized to one
particular fi, whereas the requirement of positivity implies
feqi ≥ 0. This asymmetry of the range of x is crucial in the
subsequent derivation of the exact solution. With this
decomposition, we also partition the inner product into
two partial contributions hf;ψiΩ� ¼ P

fi∈Ω�fiψ i.
Using the proposed decomposition and the mentioned

inequalities, Eq. (5) is modified to

ΔH ¼ −hf;G1ðα̂xÞiΩ− − hf;G2ðα̂xÞiΩþ − α̂hf;G3ðxÞi

þ αα̂ðβ − 1Þ
��

f;
x2

2

�
− ðα̂þ αÞ

�
f;
x3

2

�
Ω−

�

þ α̂f½hf;G4ðxÞiΩþ þ hf;G5ðxÞiΩ− �g; ð9Þ

where G1ðyÞ ¼ −ð1þ yÞ logð1þ yÞ þ ðyþ y2=2 − y3=2Þ,
G2ðyÞ ¼ ð1þ yÞ½− logð1þ yÞ þ I ð1Þ

NCðyÞ�, and G3ðyÞ ¼
y½logð1þ yÞ − I ð1Þ

GLðyÞ� are positive semidefinite functions
in their respective domains due to Eqs. (6), (8), andG4ðyÞ¼
αy2=2−2y2=ð2þyÞ, G5ðyÞ ¼ −α2y3=2þ αy2=2 − 2y2=
ð2þ yÞ. In Eq. (9), all terms are negative except the term
in curly brackets.We ensureΔH ≤ 0 by solving the quadratic
g1ðαÞ ¼ hf;G4ðxÞiΩþ þ hf;G5ðxÞiΩ− formed by the term in
curly brackets, whose positive root α1 is found as

α1 ¼
hf; x2i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf; x2i2 − 8hf; x3iΩ−hf; 2x2

2þxi
q

2hf; x3iΩ−
: ð10Þ

It can be seen that limxi→0α1 ¼ 2. For the purpose of
illustration, we simulate the setup of the one-dimensional
shock tube, for which the complexity associated with the
nonexistent path length for rare events is well understood in
the context of ELBM [29]. Flow profiles shown in Fig. 3
illustrate that numerical oscillations are sharply reduced (but
not removed) and numerical dissipation is prominent only
near points of sharp gradients. Figure 4 shows departure of α
from2 (LBMvalue) only in a narrow regionof sharpgradients
(compressive shock front). The above scheme is too dis-
sipative for hydrodynamic applications as at the point of
maximum departure the deviation of α from 2 is 11%.
We now construct a less dissipative scheme by consid-

ering the stricter inequalities from Eq. (8), using which
Eq. (5) is modified to

ΔH ¼ −hf;G6ðα̂xÞiΩ− − hf;G7ðα̂xÞiΩþ − α̂hf;G8ðxÞi
þ hf; ð1þ α̂xÞI ð3Þ

NCðα̂xÞiΩþ þ hf; ð1þ α̂xÞG9ðα̂xÞiΩ−

− α̂hf; xI ð3Þ
GLðxÞi; ð11Þ

FIG. 2. Residue related to the approximations of logð1þ yÞ
evaluated with the trapezoid rule, 1

3
Simpson’s rule, Boole rule,

i.e., the first-, second-, and third-order Newton-Cotes quadra-
tures, respectively. Here Pn are the integrating polynomials. The
residues are positive and their magnitude progressively decreases
with increase in the order of quadrature.
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FIG. 3. Density, velocity, and entropy plots from the BGK
model, i.e., α ¼ 2 (left column), Eq. (10) (right column) at time
t ¼ 500 for viscosity ν ¼ 1.0 × 10−5. At t ¼ 0, domain was
initialized with step density as ρðx < 0Þ ¼ 1.5 in the left half of
domain and ρðx > 0Þ ¼ 0.75.
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where G6ðyÞ ¼ ð1þ yÞ½− logð1þ yÞ þ G9ðyÞ�, G7ðyÞ ¼
ð1þ yÞ½− log ð1þ yÞ þ I ð3Þ

NCðyÞ�, G8ðyÞ ¼ y½logð1þ yÞ −
I ð3Þ
GLðyÞ� are positive semidefinite in their respective

domains due to Eqs. (6), (8), and G9ðyÞ ¼ y − y2=2þ y3=
3 − y4=4þ y5=5. The terms containing G6, G7, and G8 in
Eq. (11) are negative definite. The last three terms form an
equation in α which can be solved using any iterative
scheme. To preserve the computational efficiency, we
convert it to a quadratic by solving for α ∈ ðk; hÞ,

gðαÞ ¼ −α2β2
�
f;
x3

6
−
hβx4

12
þ h2β2x5

20
−
h3β3x6

5

�
Ω−

þ α

��
f;
x2

2

�
−
�
f;
2kβ2x3

15

�
2

4þ kx
þ 1

4þ 2kx

þ 2

4þ 3kx

��
Ωþ

�
−
�
f;

60x2 þ 60x3 þ 11x4

60þ 90xþ 36x2 þ 3x3

�
:

ð12Þ

To prove the existence of α ∈ ðk; hÞ we consider α2, the
root of gðαÞjh¼0 and α1 from Eq. (10). It can be shown that
gðα1Þ < 0 < gðα2Þ hence a root of gðαÞ exists in (α1, α2).
Therefore, the lower bound k is taken as α1 and the upper
bound h is taken as α2. A detailed proof can be found in the
Supplemental Material [32].
As this method inherits the nonlinear stability of the

ELBM and provides significant speedup for entropic
solvers, model-free simulations of turbulence or multiphase
flows for complex scientific and engineering applications
with existing computational resources become a distinct

possibility. Flow over aerodynamic geometries at a realistic
Reynolds number is considered a challenging problem due
to the complex turbulence phenomena involved and high
resolution required to capture the flow properties [34]. To
this effect, simulation of viscous flow over a NACA-0012
airfoil at 10° angle of attack (AOA) and a Reynolds number
2.88 × 106 is performed using a higher-order crystallo-
graphic LBM [11] (details of the model and setup will be
presented in a separate manuscript). For this setup, the
results obtained using h ¼ 2.05 are indistinguishable from
that obtained by the proposed upper bound. Figure 5(a)
shows the coefficient of pressure (Cp) compared with
experiment [35] and Fig. 5(b) shows a snapshot of
instantaneous vorticity field of an airfoil in stall. To the
best of our knowledge this is the first place where
turbulence model free simulation is performed at such a
high Reynolds number.
To conclude, we say that this new exact solution is a

significant step in the theoretical development of the
ELBM. Furthermore, this essentially entropic LBM pro-
vides an important first step in providing a statistical
mechanics route to subgrid scale modeling. For example,
using discrete entropic space-time dynamics for Boltzmann
BGK equation, we can show that the correction to viscosity
is νT is (see Supplemental Material for details [32])

νT ¼ −τθ
Δt
2

SijSjkSki
SmnSnm

; ð13Þ

where Sij is the strain rate tensor [26,36]. This emergence
of the third invariant of the symmetrized strain rate tensor is
distinctly different from Smagorinsky’s model for turbulent
viscosity. Though physically appealing [37], further
detailed numerical and theoretical analyses of the current
framework are needed to establish usefulness of this
approach for theoretical sub-grid modeling.
Finally, we conclude by highlighting the fact that

entropic formulation of the continuous (in velocity space)
BGK model provides a new discrete dynamical system
analogue of Boltzmann dynamics. Thus, a Boltzmann-like
framework extends the second law to discrete dynamical
systems too.
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