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We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment
reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties.
At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime
appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration
amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial
dilatancy that is accounted for by a new Bernoulli-like relation.
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Liquid foams have very specific and nonintuitive wave
propagation properties due to their manifold structure made
of gas bubbles, soap films and liquid microchannels, called
Plateau borders (PBs) [1]. Their acoustic properties are not
intermediate between the ones of their constitutive liquid
and gas [2]. Foams can both act as metamaterials for given
frequencies [3] and be used as efficient barriers against
large amplitude or blast waves [4,5]. They also propagate
shear waves in bulk [6,7] or at the interfaces [8], and the
existence of supershear Rayleigh waves has been proved
following the impact of a projectile at high velocity [8]. The
wave-propagation properties of liquid foams stem from the
competition between an inertial contribution and an elastic
one; however, they involve subtle local mechanisms that
emphasize a coupling between soap films and PBs [3,9,10].
Investigations have been mainly performed in the linear
regime and the response at large amplitudes remains very
poorly studied and understood.
We reproduced Melde’s experiment with a PB as the

vibrating string, up to large amplitude oscillations. First, we
show the existence of what we call an “inertial” dilatancy
for the oscillating PB (see Refs. [11,12] for the regular
dilatancy effects in liquid foams). We derive a Bernoulli-
like relation that accounts for the experimental data over
almost four orders of magnitude: the larger its oscillation
velocity, the smaller the pressure within the PB or,
equivalently, the smaller the curvature radius of its cross
section. Second, we show that the PB splits into two zones
of different curvature radius and vibration amplitude above
a critical forcing amplitude. We interpret this transition as a
synchronization change between the coupled mechanical
responses of the PB and of its holding films, in agreement
with the measurements over three decades.
By pulling a triangular prism frame out of a surfactant

solution, we create a horizontal PB and three soap films
which span between the two solid triangular frame bases
[Fig. 1(a)]. The cross section of a PB consists in three arcs of
circles in tangential contact; its transverse dimension is given
by the radius of curvature of these arcs of circles, which we

shorten in radius hereafter. The initial radius of the PB,Ri, is
tuned by injecting liquid to compensate for the drainage [14].
It ranges between 0.1 and 1mm.We use a surfactant solution
of TTAB (tetradecyl trimethyl ammonium bromide) at a
concentration of 3 g=l (density ρ ¼ 1030 kg · m−3, surface
tension γ ¼ 36 mN · m−1, and dynamic viscosity η ¼
1.04 mPa · s [14]).
We subject the system to a mechanical excitation by

means of a mobile plate [Fig. 1(a)] rigidly connected to the
axis of a vibrator, which imposes a sinusoidal and trans-
verse motion in the frequency range 30–120 Hz. The time
scale of the soap film drainage is larger than 1 s, which
makes it possible to investigate the response of the system
to the harmonic excitation on intermediate time scales
(∼100 ms) much larger than the period of vibration
(∼10 ms), while neglecting gravity. The PB dynamics is
recorded using a high-speed camera (1000 to 5000 fps).
The excitation generates a transverse wave along the PB in
the zy plane [Fig. 1(b) and movies in the Supplemental
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FIG. 1. (a) Sketch of the experimental setup. (b) Snapshot of an
oscillating 15 cm-long PB (60 Hz). Inset: A 5 cm-long PB (top)
and the envelope of the PB motion (bottom). (c) Experimental
dispersion relation for Ri ¼ 0.1 mm and for several lengths of the
PB (2 to 7 cm) and widths of the films (0.5, 1.5, and 3.3 cm).
The slope of the straight line is c ¼ 2.0 m=s. The dashed blue
line shows the result of the model of Derec et al. [13].
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Material [15]]. When the mobile plate contacts the whole
system made of the PB and its three holding films, the PB
exhibits an elliptic trajectory in any xy plane, whereas this
trajectory is linear, along the y axis, when the mobile plate
contacts the horizontal film only, as in Fig. 1(a). We
checked that similar features are observed in both cases
and retained the second configuration for simplicity. The
time average of the image sequence shows the envelope of
the PB motion and reveals the presence of nodes and
antinodes at all frequencies. The nodes amplitude is not
exactly zero and the waves are not pure standing waves.
Figure 1(c) displays the experimental dispersion relation

ω ¼ 2πf vs k ¼ 2π=λ, where λ is thewavelength obtained at
small amplitude for various lengths of the PB and various
widths of the holding films. The dispersion relation is
consistent with the expression derived by Derec et al. in
the range 20–2000Hz [9],which predicts that the oscillations
of the soap films, including the effect of the air they set into
motion, dominate at low frequency, whereas the inertia of the
PB prevails at high frequency.Most of our measurements are
dominated by the oscillation of the soap films [13]. In
practice, a nondispersive dispersion relation remains a
good approximation to describe the small amplitude regime
[Fig. 1(c)]. The best linear adjustment yields a value of the
phase velocity c ¼ 2.0� 0.1 ms−1. Attenuation becomes
significant when the PB length reaches 15 cm [Fig. 1(b)]. In
what follows, wewill set the length of the PB at 5 cm, and the
width of the films at 1.5 cm.
At large amplitude excitation, the system undergoes a

transition toward a highly nonlinear regime. The PB splits
into two distinctive zones as illustrated in Fig. 2 (and
movies in the Supplemental Material [15]). On the side of
the moving plate, the PB appears to be thin and undergoes
large-amplitude oscillations. Conversely, on the side of the
fixed injection plate, the PB is thick and hardly vibrates. In
between these two zones, hereafter, respectively, referred to
as the “thin” and “thick” zones, a transition region a few
millimeters long displays a rather sharp jump in PB radius,

referred to as the “front.” This region is also characterized
by a periodic discharge of liquid from the PB to the holding
soap films. We observe that the larger the driving ampli-
tude, the longer the thin zone. No significant hysteresis was
observed when decreasing the amplitude of excitation. The
process is fully reversible and the linear regime is retrieved
at small amplitude.
Quantitative measurements are performed by imaging

both the PB and the horizontal film in the background using
a “dark field” configuration obtained by screening the direct
light beam. The PB appears as a dark-bright-dark stripe,
while the envelope of the soap film projection in the zy plane
is homogeneously bright [Fig. 2(b)]. We now impose a
sweep in driving amplitude at a typical rate of 10 mm=s.
This is slow enough to consider that the driving amplitude is
constant over a time period; we checked that the results do
not depend on this rate. For each experiment, we build a
space-time diagram along a line z ¼ z0, with z0 at the first
antinode of the linear regime tomaximize the signal-to-noise
ratio. Note that the following results do not depend on the
choice of the antinode. Figure 3(a) gives an example
obtained from the experiment of Fig. 2(b). Various local
quantities are measured for each period: the oscillation
amplitude of the PB, APB (defined from rest to crest), the PB
radius, R, the difference in amplitude of oscillation between
the PB and the film, ΔA (measured when the PB position
is maximal), and the phase difference between the film
oscillation and the PB oscillation, Δϕ, where Δϕ ¼ 2πfΔt
and Δt is the time delay between the film and the PB.
We observe that the PB and film amplitudes first increase

linearly with the driving amplitude. A sudden increase in
the amplitude of the PB, concomitant to a rapid decrease in
the PB radius [Fig. 3(c)], marks the passage of the front at
z0. The film and the PB oscillate approximately out of
phase before the passage of the front (Δϕ > π=2), that is to

(a) (b)

FIG. 2. Image sequence obtained at increasing driving ampli-
tude. The red arrows emphasize the position of the front.
(a) Bright field imaging (60 Hz). (b) Dark field imaging
(40 Hz). The red dashed line indicates z0, the position selected
to plot the space-time diagram of Fig. 3.

(a)

(b) (c) (d)

FIG. 3. (a) Space-time diagram for the experiment reported in
Fig. 2(b). Labels (1) to (8) indicate the time positions of the
numbered images of Fig. 2(b). The oscillations of both the PB
and the film are visible. The passage of the front at z0 occurs for
time label (6). (b) Enlargement prior to time label (6). The PB and
the envelope of the film are outlined in blue and red, respectively,
over one oscillation time period. (c) PB radius R (black circles)
and phase difference Δϕ ¼ 2πfΔt (light gray circles) as func-
tions of time. The passage of the front occurs for Rc ¼ 0.42 mm.
(d) Same as (b) after time label (6).
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say in the thick zone, whereas they oscillate approximately
in phase after the passage of the front (Δϕ < π=2), in the
thin zone [Fig. 3(c)]. We note Rc the critical radius that
marks the passage of the front. The critical radii are close to
0.4 mm in all our measurements. Rc does not significantly
depend on the initial PB radius Ri, but slightly decreases
when the driving frequency increases [Fig. 5(b)]. The best
adjustment of the data leads to the following relationship:

RcðmÞ ¼ ð2.1� 0.3Þ × 10−3fðHzÞ−0.41�0.04: ð1Þ

Figure 4 summarizes the measurements made on space-
time diagrams for experiments performed during succes-
sively increasing and decreasing ramps in amplitude of
excitation.
The amplitude of the PB appears to be a decreasing

function of its radius at given frequency f and initial PB
radius Ri [Figs. 4(a) and 4(b)]. As already mentioned, the
thicker the PB, the smaller its oscillations. A slight decrease
in the PB amplitude is observed at increasing frequencies
for a given Ri, or at decreasing Ri for a given frequency.
Empty and solid symbols were used in Fig. 4 to differ-
entiate the data obtained before and after the front reaches
z0, respectively. Strikingly, the experimental curves of
Figs. 4(a) and 4(b) are continuous and smooth; no par-
ticular feature of the curves reveals the passage of the front.

Given a typical velocity scale APBf with APB ∼ 4 mm
and f ∼ 50 Hz, we can build a Reynolds number Re ¼
ρRAPBf=η for the velocity variations inside the PB. With
R ∼ 0.5 mm, we get Re ∼100, which calls for an inertial
regime. Taking λ (1.7–6.7 cm in this study) instead of R for
the length scale leads to a higher value and the same
conclusion holds. The existence of inertial flows inside PBs
has recently been proved and the coupling between the
capillary and inertial effects shown to exhibit highly non-
linear features such as the propagation of hydraulic jumps
and solitons [16–18]. Assuming a capillary-inertial mecha-
nism, we write a Bernoulli-like relation by balancing a
typical kinetic energy per volume ρðAPBfÞ2 and the
pressure difference Pi − P ¼ γ½ð1=RÞ − ð1=RiÞ� given by
the Laplace formula [note that the sign (-) is due to the
concave free surface of the PB cross section]:

A2
PB ∼

γ

ρf2

�
1

R
−

1

Ri

�
: ð2Þ

This scaling was tested on our measurements. Figure 4(c)
shows a remarkably good fit with all the experimental
data over almost 4 orders of magnitude; the best adjust-
ment yields a proportionality factor of 0.084� 0.003.
Equation (2) proves to capture all the fine details of the
trends observed in Figs. 4(a) and 4(b). The relation shows
that the PB is dilatant and that the larger its oscillation
velocity, the smaller its radius. Note that Eq. (2) expresses
an intimate signature of the PB internal flow and geometry,
without any reference to the coupling of the PB with the
holding films. We thus do not expect this local relationship
to provide any sign of the passage of the front, in agreement
with our observations.
The difference in amplitude ΔA connects to the coupling

between the soap film and the PB. Measurements at a given
frequency and various initial radii lead to bell-shaped curves
that all collapse to a unique curve, monotonically increasing
with the PB radius, when ΔA is normalized by the PB
amplitude, APB. As an example, all the data of Fig. 4(d)
collapse in Fig. 4(e) (dark blue symbols) and can be fitted by
a parabola (dark blue line) over 3 orders of magnitude by
introducing the fitting length r:

ΔA
APB

¼
�

R
rðfÞ

�
2

: ð3Þ

Again, no particular feature on the curves reveals the passage
of the front. All the data obtained for various frequencies
collapse on the same curve [Fig. 4(f)] with r values slightly
decreasing with f [Fig. 5(b)]:

rðmÞ ¼ ð1.9� 0.1Þ × 10−3fðHzÞ−0.46�0.02: ð4Þ
Models of the coupling between a PB and its holding

films have been derived by Seiwert et al. [10] for their
particular circular geometry, and by Derec et al. [9] for
small-amplitude excitations. Here we demonstrate that a

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a)–(c) Results on the amplitude APB of the PB. The
solid lines are given by Eq. (2) with 0.084 as the proportionality
factor. (a) APB as a function of R for a frequency f ¼ 40 Hz and
various initial radii Ri [0.32 (square), 0.61 (triangle), and 0.96
(diamond) mm]. The vertical dashed line pinpoints the critical
radius Rc ¼ 0.42 mm. (b) APB as a function of R for an initial
radius Ri ¼ 0.85 mm and various frequencies (30, 40, 60, and
120 Hz). (c) A2

PB as a function of ðγ=ρf2Þ½ð1=RÞ − ð1=RiÞ� (log-
log scale). (d)–(f) Results on the amplitude difference ΔA. (d)ΔA
as a function of R for the same experiments as in (a). Rc ¼
0.42 mm is represented. The solid lines are guides for the eyes.
(e) ΔA=APB as a function of R. Solid lines are parabolic fits,
½R=rðfÞ�2, where r is a free parameter adjusted for each frequency
(30, 40, 60, and 80 Hz). (f) ΔA=APB as a function of ½R=rðfÞ�2
(log-log scale).
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simple model of driven oscillator having a PB radius-
dependent eigenfrequency successfully describes the cou-
pling between the PB and the films, as well as the
oscillatory response of the PB when combined with
the dilatancy effect, which links the radius and amplitude
of the PB [Eq. (2)].
Each section of the PB (xy plane) is considered as

independent and driven by the motion of the soap films in
its vicinity, leading to the 2D problem sketched in Fig. 5(a).
The force exerted by the horizontal film is assumed to point
toward the first maximum of the film envelope in the xy
plane; this defines the angle θ. The PB is assumed to be
located close to a node of vibration of the film. This
assumption is checked experimentally at least in the thick
zone where the amplitude of the PB is significantly smaller
than the one of the horizontal film. In consequence, the
distance between the PB and the film maximum is
approximately equal to a quarter of the wavelength, λ=4,
and θðtÞ ∼ f½yfðtÞ − yPBðtÞ�g=ðλ=4Þ in the limit of small
angles, where yf and yPB are the y positions of the film
maximum and of the PB, respectively. At the 1st order in θ,
the forces exerted on the PB by its three holding films
compensate in the x direction, but not in the y direction,
where the force equals 2γθ. The momentum per unit length
equation is ρS½d2yPBðtÞ=dt2� ¼ ð8γ=λÞ½yfðtÞ − yPBðtÞ�,
where S ¼ ð ffiffiffi

3
p

− π=2ÞR2 is the area of the PB cross
section [9] and λ ¼ c=f with c taken equal to 2 ms−1.
The equation of motion of each cross section of the PB can
thus be rewritten into the form of the differential equation
of a driven linear oscillator:

d2yPBðtÞ
dt2

þ 2πf0
Q

dyPBðtÞ
dt

þ ð2πf0Þ2yPBðtÞ ¼ ð2πf0Þ2yfðtÞ;

ð5Þ

where the eigenfrequency f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2γ=π2ρSλÞ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½2=ð ffiffiffi
3

p
− π=2Þπ2�ðγf=ρR2cÞ

q
depends on the local PB

radius R. A linear damping term can be included
through the use of a quality factor Q. We do not
discuss its physical meaning since all the following results
do not depend on Q. We note yfðtÞ ¼ Af cosð2πftÞ
the harmonic motion of the film envelope and we
look for the steady state harmonic solution of the PB
motion under the form yPBðtÞ ¼ APB cosð2πft − ΔϕÞ.
Classically, the amplitude and phase are given by
APB ¼ Af=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðf=f0Þ2�2 þ ðf=f0QÞ2

p
and cosðΔϕÞ ¼

½1 − ðf=f0Þ2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðf=f0Þ2�2 þ ðf=f0QÞ2

p
. The model

predicts a phase change for f0 ¼ f or, equivalently, for
R ¼ Rth, where

Rth ≃ 1.12 ×

�
γ

ρc

�
1=2

× f−1=2; ð6Þ

or RthðmÞ≃ 4.69 × 10−3 × fðHzÞ−1=2 with our parameters
[Fig. 5(b)]. For large radii of the PB, R > Rth, the PB and
the film oscillate out of phase (Δϕ > π=2). Conversely, the
thin zones of the PB and the film vibrate in phase as
R < Rth. Rth is thus a prediction of the critical radius Rc
measured experimentally. The predicted exponent −1=2 for
the frequency dependence is consistent with the measure-
ments and there is less than a factor 2 on the prefactors
[Eq. (1)], which is remarkable considering the simplicity of
the model. Regarding ΔA, the model gives ΔA ¼ APB−
Af cosðΔϕÞ, which leads to ΔA=APB ¼ ðf=f0Þ2 ¼
ðR=RthÞ2 after calculations. The model retrieves the exper-
imental parabolic behavior and Rth can also be assimilated
to r. Again, the agreement with the experimental data
[Eq. (4)] is very good [Fig. 5(b)].
Combining this model and the inertial dilatancy effect

for the oscillating PB, we can elaborate the following
scenario for an experiment performed at a given frequency
and increasing driving amplitude. As long as the amplitude
of oscillation remains small, the PB, which we assume
initially uniform and rather thick, oscillates out of phase
with the films and the eigenfrequency of the oscillator
corresponding to any cross section of the system is smaller
than the driving frequency. As the amplitude of the mobile
plate increases, the amplitude of the PB increases as well;
due to the inertial dilatancy characterized by the Bernoulli-
like relationship of Eq. (2), the radius of the PB decreases,
which in turn leads to an increase in the oscillator
eigenfrequency. Assuming that the oscillation amplitude
for the PB is the largest close to the mobile plate, we expect
that the oscillator eigenfrequency reaches the value of the
driving frequency there first; simultaneously, a change in
phase between the PB and the films occurs. As the driving
amplitude increases further, the oscillator eigenfrequency
becomes larger than the driving frequency over a more and
more extended zone, starting at the mobile plate and ending
for a critical PB radius, or, equivalently, a critical PB
oscillation amplitude. This leads to the experimentally

(a) (b)

FIG. 5. (a) Sketch of the model. The PB is symbolized by the
red empty spot. It is driven by the horizontal soap film, whose
maximum in the xy plane is displayed by the blue solid spot. Each
film pulls on the PB with a force 2γ per unit length. (b) Mea-
surements of Rc (square) and r (circle) and their interpolations
(dashed lines) given by Eqs. (1) and (4). The model Rth is
displayed by the solid line.
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observed drift of a front that separates the out of phase or
thick zone from the in phase or thin zone, toward the
fixed base.
The present study emphasizes the subtle coupling that

exists between the basic constituents of liquid foams and
brings to light a new inertial dilatancy effect of their Plateau
borders. Large amplitude perturbations lead to a nonlinear
regime that has direct consequences for foam stability and
wave properties.

We thank C. Derec, F. Elias, B. Dollet, and J.
Rajchenbach for fruitful discussions and B. Gay-Para for
the sketch of the setup.

*Christophe.Raufaste@unice.fr
[1] I. Cantat et al., Foams. Structure and Dynamics, edited by

S. Cox (Oxford University Press, New York, 2013).
[2] A. B. Wood, A Textbook of Sound (Bell, London, 1944).
[3] J. Pierre, B. Dollet, and V. Leroy, Phys. Rev. Lett. 112,

148307 (2014).
[4] I. Goldfarb, Z. Orenbakh, I. Shreiber, and F. Vafina, Shock

Waves 7, 77 (1997).
[5] M. Monloubou, A. Saint-Jalmes, B. Dollet, and I. Cantat,

Europhys. Lett. 112, 34001 (2015).
[6] Q. Sun, J. P. Butler, B. Suki, and D. Stamenović, J. Colloid

Interface Sci. 163, 269 (1994).
[7] F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer, and

R. Höhler, Phys. Rev. E 89, 012308 (2014).
[8] A. Le Goff, P. Cobelli, and G. Lagubeau, Phys. Rev. Lett.

110, 236101 (2013).

[9] C. Derec, V. Leroy, D. Kaurin, L. Arbogast, C. Gay, and
F. Elias, Europhys. Lett. 112, 34004 (2015).

[10] J. Seiwert, J. Pierre, and B. Dollet, J. Fluid Mech. 788, 183
(2016).

[11] D. Weaire and S. Hutzler, Philos. Mag. 83, 2747 (2003).
[12] S. P. L. Marze, A. Saint-Jalmes, and D. Langevin, Colloids

Surf. A 263, 121 (2005).
[13] The expression derived by Derec et al. [9] gives k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρa=γÞ2=3ω4=3 þ ðρe=3γÞω2 þ ð0.161ρR2=3γÞ2ω4
p

, where
ρa is the air density and e is the thickness of the soap films.
Figure 1(c) shows a good agreement between the data and
the above theoretical expression using values of e ¼ 10 μm
for the film thickness and R ¼ 100 μm for the PB radius.
Under our experimental conditions, the dispersion relation is
dominated by the oscillation of the soap films, including the
effect of the air they set into motion, in agreement with the
criterion fR3=2 < 46 mm3=2 s−1 [9]. Only the thickest PBs
do not fulfill this criterion and the inertia of the PB (3rd term
under the square root) should not be neglected for them.

[14] A. Cohen, N. Fraysse, and C. Raufaste, Phys. Rev. E 91,
053008 (2015).

[15] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.238001 for the
movies.

[16] A. Cohen, N. Fraysse, J. Rajchenbach, M. Argentina, Y.
Bouret, and C. Raufaste, Phys. Rev. Lett. 112, 218303
(2014).

[17] M. Argentina, A. Cohen, Y. Bouret, N. Fraysse, and
C. Raufaste, J. Fluid Mech. 765, 1 (2015).

[18] Y. Bouret, A. Cohen, N. Fraysse, M. Argentina, and
C. Raufaste, Phys. Rev. Fluids 1, 043902 (2016).

PRL 119, 238001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 DECEMBER 2017

238001-5

https://doi.org/10.1103/PhysRevLett.112.148307
https://doi.org/10.1103/PhysRevLett.112.148307
https://doi.org/10.1007/s001930050065
https://doi.org/10.1007/s001930050065
https://doi.org/10.1209/0295-5075/112/34001
https://doi.org/10.1006/jcis.1994.1104
https://doi.org/10.1006/jcis.1994.1104
https://doi.org/10.1103/PhysRevE.89.012308
https://doi.org/10.1103/PhysRevLett.110.236101
https://doi.org/10.1103/PhysRevLett.110.236101
https://doi.org/10.1209/0295-5075/112/34004
https://doi.org/10.1017/jfm.2015.674
https://doi.org/10.1017/jfm.2015.674
https://doi.org/10.1080/1478643031000137886
https://doi.org/10.1016/j.colsurfa.2005.01.014
https://doi.org/10.1016/j.colsurfa.2005.01.014
https://doi.org/10.1103/PhysRevE.91.053008
https://doi.org/10.1103/PhysRevE.91.053008
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.238001
https://doi.org/10.1103/PhysRevLett.112.218303
https://doi.org/10.1103/PhysRevLett.112.218303
https://doi.org/10.1017/jfm.2014.717
https://doi.org/10.1103/PhysRevFluids.1.043902

