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Recently, it was shown that molecules rotating in superfluid helium can be described in terms of
the angulon quasiparticles [Phys. Rev. Lett. 118, 095301 (2017)]. Here, we demonstrate that in the
experimentally realized regime the angulon can be seen as a point charge on a two-sphere interacting with a
gauge field of a non-Abelian magnetic monopole. Unlike in several other settings, the gauge fields of the
angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective
parameter space. Furthermore, we find a topological transition associated with making the monopole
Abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results
pave the way for studying topological phenomena in experiments on molecules trapped in superfluid
helium nanodroplets, as well as on other realizations of orbital impurity problems.
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In Maxwell’s unification of electricity and magnetism,
there was one piece missing that would make the electric
and magnetic forces perfectly symmetric with respect to
each other—the magnetic monopoles. As demonstrated by
Dirac [1], the existence of a single magnetic monopole
would explain quantization of electric charge everywhere in
the Universe. Since Dirac’s work, the existence of magnetic
monopoles—as real elementary particles or effective
quasiparticles—has preoccupied physicists working in sev-
eral different fields. ’t Hooft [2] and Polyakov [3] demon-
strated the existence of non-Abelianmagnetic monopoles in
the context of the unification of the fundamental interactions
[4]. Despite the lack of experimental evidence for elemen-
tary monopoles in nature [5], collective phenomena exhi-
biting the behavior of magnetic monopoles have been
predicted to emerge in condensed matter systems [6–10]
and were subsequently observed in experiments [11–14].
As shown by Berry [15], magnetic monopoles can also

emerge in an external parameter space of a simple quantum
mechanical problem [16,17]. Moreover, the parameter
space can be further generalized to coordinates of an
interacting particle [18–20]. For example, Moody et al.
[18] showed that the effective Hamiltonian describing
nuclear rotation of a diatomic molecule can be rewritten
as that of a charged particle interacting with a gauge field of
a magnetic monopole. In follow-up studies the emerging
gauge fields were studied in various contexts, from differ-
ent types of atomic problems [21–25] to spinor Bose-Fermi
mixtures [26] to the fractional quantum Hall effect [27] to
Bose-Einstein condensates [8–10]. Finally, emergence of
monopolelike gauge fields represents an important tool for
computing topological invariants of quantum systems using
Chern numbers [28], and thereby classifying the topology
of the problem [8,29–32]. Such a topological classification
of quantum states is particularly relevant in the context of
current research on topological states of matter [33–38].

In this Letter, we demonstrate that non-Abelian magnetic
monopole fields emerge in the recently introduced angulon
impurity problem [39–41]. The angulon represents a quan-
tum impurity exchanging orbital angular momentum with a
many-particle bath, and it serves as a reliable model for the
rotation of molecules in superfluids [42–45]. We hereby
show that superfluid helium nanodroplets, which have
been used as a tool of molecular spectroscopy for more
than two decades [46–50], behave as effective non-Abelian
magnetic monopoles with respect to molecular impurities
trapped inside them. Furthermore, our analysis reveals a
topological transition taking place around the previously
reported “angulon instabilities” [39,51,52], where orbital
angular momentum is resonantly transferred between the
impurity and the bath. Such a transition corresponds to an
Abelianization of the magnetic monopole.
Our approach is based on the idea of Moody et al. [18],

which we herein extend to the case of quantum impurity
problems. Let us start from the most general Hamiltonian
describing a quantum impurity interacting with a many-
particle environment:

ĤðrÞ ¼ −μ∇2 þ ĤmbðrÞ: ð1Þ

Here, the Laplacian in the generalized coordinates of the
impurity, r, represents the kinetic energy of the impurity.
For a linearly moving impurity (the polaron problem [53]),
there is −μ∇2 ≡ 1=ð2mÞP̂2, where m is the mass of an
electron moving at momentum P (units of ℏ≡ 1 are used
hereafter). In the angulon problem, for a rotating impurity
we have −μ∇2 ≡ BL̂2, where L̂ is the orbital angular
momentum operator and B ¼ 1=ð2IÞ the rotational con-
stant with the moment of inertia I. The second term of
Eq. (1) corresponds to the many-body part of the
Hamiltonian, which includes the kinetic energy of the bath
and the impurity-bath interactions that depend on r.
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Furthermore, ĤmbðrÞ can include any external potential,
such as that due to an electromagnetic field [54–56].
The eigenvalue equation for Hamiltonian (1) can be

written as

ĤðrÞjΨαðrÞi ¼ EαjΨαðrÞi; ð2Þ

where jΨαðrÞi≡ hrjΨαi is the eigenstate in the impurity
coordinate and α is the quantum number labeling the
eigenstate. Next, we perform the Born-Oppenheimer (BO)
expansion of the eigenstates [18–20]:

jΨαðrÞi ¼
X
n

Φα
nðrÞjφnðrÞi; ð3Þ

where jφnðrÞi are the basis vectors formed from the
eigenstates of ĤmbðrÞ with any possible quantum
numbers n in the corresponding Fock space, and Φα

nðrÞ≡
hφnðrÞjΨαðrÞi is the n-component impurity wave function.
After we plug the BO expansion (3) into Eq. (2) and project
onto the basis vector hφmðrÞj, we obtain

X
n

HmnðrÞΦα
nðrÞ ¼ EαΦα

mðrÞ; ð4Þ

with the effective impurity Hamiltonian

HmnðrÞ ¼ −μ
X
l

Dml · Dln þ A0
mnðrÞ: ð5Þ

Here, A0
mnðrÞ ¼ hφmðrÞjĤmbðrÞjφnðrÞi is the non-Abelian

scalar potential, and Dmn ≡ ∇δmn − iAmnðrÞ is the covariant
derivative. The particular object we are interested in is the
non-Abelian gauge field

AmnðrÞ ¼ hφmðrÞji∇jφnðrÞi ð6Þ

which contains all of the information about the geometry and
topology of the problem.
Thus, we have rewritten the Hamiltonian (1) in the gauge

invariant form (5) corresponding to the gauge group Uð∞Þ.
Note that no approximations were introduced during this
step. The origin of the emerging gauge symmetry, or, more
properly, the gauge redundancy [57], follows from the fact
that one could unitarily transform the basis vectors such
that the BO expansion (3) is invariant [20]. Now, we
assume that there exists a certain physical configuration
where the restriction of the basis vectors is legitimate.
A standard technique would be to use the product-state
ansatz (the BO approximation), where the eigenstate (3) is
approximated by jΨαðrÞi ≈Φα

nðrÞjφnðrÞi, which results in a
Uð1Þ gauge field. This approximation is, in principle,
applicable to any impurity problem. A non-Abelian gauge
field, on the other hand, can only be obtained by consid-
ering more than one many-body state. The latter can be
realized, for instance, within the adiabatic approximation.

There it is assumed that the many-body state jφnðrÞi
remains in a certain energy level, and an N-fold degenerate
level yields a UðNÞ gauge field [16]; see also Refs. [58,59]
for emerging non-Abelian fields in nondegenerate systems.
In many-body systems, however, the latter can be chal-
lenging to achieve unless the many-body state of interest is
separated from the rest of the spectrum by an energy gap.
Here, to truncate the number of basis vectors without
employing adiabaticity, we introduce a new method based
on the variational principle. As long as the quasiparticle
has a discrete energy spectrum (as the angulon does), the
variational state can be written as the BO expansion with a
small number of basis vectors. We note that the discussion
below is applicable to other quantum impurity problems
with discrete spectrum, such as a polaron interacting with a
magnetic field [54], or a particle in a double-well potential
coupled to a bosonic bath [60].
Let us consider the angulon quasiparticle [39–41,52,

55,61,62]. For the angulon, the truncation of basis states
through the variational principle was shown to provide
good agreement with experiments [42,44]. The angulon
Hamiltonian, originally derived in Ref. [39], is

ĤA ¼ BL2 þ
X
kλμ

ωðkÞb̂†kλμb̂kλμ þ
X
kλμ

UλðkÞ½Y�
λμðΩ̂Þb̂†kλμ

þ YλμðΩ̂Þb̂kλμ�: ð7Þ

Here,
P

k ≡
R
dk, ωðkÞ is the dispersion relation for the

bosonic bath, and b̂†kλμ and b̂kλμ are the bosonic creation and
annihilation operators in the angular momentum representa-
tion, with k, λ, and μ labeling the bosonic linear momentum,
the angular momentum, and its projection on the laboratory-
frame z axis, respectively [41]. The last term of Eq. (7)
describes the interaction of the impurity with the bosonic
bath, where YλμðΩ̂Þ are the spherical harmonic operators
[63] that depend on the impurity orientation in the laboratory
frame, Ω̂≡ ðθ̂; ϕ̂Þ, and UλðkÞ is the angular-momentum-
dependent coupling strength.
In Ref. [40], it was shown that in the strong-coupling

regime, UλðkÞ ≫ B, the angulon can be described by the
variational state

jΨLMi¼ Ŝ1Ŝ2

�
g0j0ijLM0iþ

X
kλn

αkλnb̂
†
kλnj0ijLMni

�
; ð8Þ

where g0 and αkλn are the variational parameters, and
L, M, and n label the total orbital angular momentum, its
projection on the quantization axis in the laboratory, and the
body-fixed frames, respectively [64]. The first transforma-
tion, Ŝ1¼ expð−iϕ̂⊗ Λ̂zÞexpð−iθ̂⊗ Λ̂yÞexpð−iγ̂⊗ Λ̂zÞ,
brings the bath degrees of freedom into the frame corotating
with the quantum rotor, where Λ̂ ¼ P

kλμνσλμνb̂
†
kλμb̂kλν

is the total angular momentum operator of the bath and
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σλ the λ’s representation of the rotation group [63]. The
second transformation, Ŝ2 ¼ exp ½−PkλfλðkÞðb̂†kλ0 − b̂kλ0Þ�,
is the coherent state transformation with fλðkÞ ¼ UλðkÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2λþ 1Þ=ð4πÞp

=½ωðkÞ þ Bλðλþ 1Þ�.
Following Eq. (3), the basis vectors of the state

jΨLMðΩÞi is

jφnðΩÞi ¼ Ŝ1ðΩÞŜ2
1

cn

�X
kλ

αkλnb̂
†
kλnj0i þ δn0g0j0i

�
; ð9Þ

with jcnj2 ¼
P

kλjαkλnj2 þ δn0jg0j2. For impurities of
experimental interest (such as molecules in superfluids),
only a few coupling constants UλðkÞ are of substantial
magnitude [65]. We assume that only the isotropic term,
U0ðkÞ, as well as the leading anisotropic term, U1ðkÞ, is
present. In this case, the gauge group of interest is Uð3Þ.
Using Eq. (6), we compute A ¼ Aϕϕ̂þ Aθθ̂ with the
physical (or Cartesian) components of A given by [66]

Aϕ¼

0
BB@

−cotθ −κffiffi
2

p 0

−κ�ffiffi
2

p 0 −κ�ffiffi
2

p

0 −κffiffi
2

p cotθ

1
CCA; Aθ¼

0
BB@

0 iκffiffi
2

p 0

−iκ�ffiffi
2

p 0 iκ�ffiffi
2

p

0 −iκffiffi
2

p 0

1
CCA: ð10Þ

Here, θ̂ and ϕ̂ are unit vectors, and κ ¼ P
kα

�
k11½αk10−

f1ðkÞg0�=ðc1c0Þ. We further calculate the field strength,

Fϕθ ¼
1

sin θ
½∂ϕAθ − ∂θðAϕ sin θÞ� − i½Aϕ; Aθ�

¼ ð1 − jκj2ÞΣz; ð11Þ

where Σ ¼ σ1. Fϕθ in Eq. (11) is the strength of a Uð3Þ
monopole with charge g ¼ 1 − jκj2. This allows us to
interpret the angulon (or a molecule immersed in a droplet
of superfluid 4He) as a three-component impurity interact-
ing with the field of a non-Abelian magnetic monopole.
In order to provide quantitative results, we set the model

parameters to the values used in Ref. [40]. UλðkÞ ¼
uλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2εðkÞn0=½ωðkÞð2λþ 1Þ�

p R
drr2vλðrÞjλðkrÞ, where

uλ and vλðrÞ define the strength and shape of the
molecule-boson interaction potential and jλðkrÞ is the sphe-
rical Bessel function. We model the two-body potentials
using Gaussian form factors vλðrÞ ¼ ð2πÞ−3=2e−r2=ð2r2λÞ and
adapt a Bogoliubov-type dispersion relation ωðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðkÞ½εðkÞ þ 2gbbn0�

p
, where εðkÞ ¼ k2=ð2mÞ is the boson

kinetic energy. The boson-boson contact interaction is
set to gbb ¼ 418ðm2u0Þ−1=2. Furthermore, we take the
potential anisotropy to be u1 ¼ 5u0 and the range to be
r0 ¼ r1 ¼ 15ðmu0Þ−1=2, with uλ ≡ 0 for λ > 1. In what
follows, we study the behavior of the system as a function
of the dimensionless rotational constant, ξ ¼ ln½B=u0�, and
the dimensionless density, ~n0 ¼ ln½n0ðmu0Þ−3=2�.

In Refs. [39–41] it was shown that the variational
calculation with a state of the form (8) allows one to
access to the entire spectrum of the system through the
spectral function [67]. Figure 1 shows the spectral function
for L ¼ 1 (and M ¼ 0 hereafter) state at the density
~n0 ¼ ln½0.014� (in red), which corresponds to the case
presented in Ref. [40]. One can see that around ξc ≈ −1.6
there is a discontinuity in the spectrum, which corresponds
to the so-called angulon instability [39,40]. Such an
instability corresponds to a resonant transfer of angular
momentum between the impurity and the bath. Recently,
the angulon instabilities were identified in experimentally
observed spectra of CH3 and NH3 molecules trapped in
superfluid helium nanodroplets [51].
In the same figure, we present the charge of the magnetic

monopole g. First of all, we observe that g approaches zero
around the instability point ξc, which corresponds to the
limit of κ → 1. In this limit the magnetic field (11)
vanishes; hence, the vector potential (10) can be gauged
away, A → A0 ¼ 0. This result can be understood as
follows. When κ → 1, the basis vectors form a representa-
tion of the rotation group, hφnjŜ1ðΩÞΛ̂Ŝ−11 ðΩÞjφmi ¼ Σnm.
As rotational invariance represents a global symmetry, there
cannot exist a gauge field. As a consequence, the impurity
and the bath interact only through the electric potential, A0.
Away from the instability point ξc, the monopole charge

assumes a finite value. For ξ < ξc and for ξ > ξc, however,
the behavior of the gauge field is quite different. In the
former regime, the impurity interacts with an effective gauge
field which, as we show below, is truly non-Abelian, and
the monopole charge takes values in the range of ∼0.4–0.6.
For ξ > ξc, on the other hand, the monopole charge is
identically 1, which corresponds to κ ¼ 0. In this situation,
the monopole gauge field becomes “Abelianized”, i.e.,

A ¼ cot θΣzϕ̂: ð12Þ

FIG. 1. Density plot of the angulon spectral function (the red
curves), the charge of the Uð3Þ magnetic monopole, g (the blue
solid curve), and the amplitude of the �1 component of the
impurity wave function, c�1 (the black dashed curve) as a
function of the dimensionless rotational constant, ξ¼ ln½B=u0�,
for the L ¼ 1 state. The dimensionless bath density is set to
~n0 ¼ ln½0.014�. The vertical dashed line indicates the critical
value, ξc, corresponding to the topological transition. See the text.
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In other words, for ξ > ξc the gauge field can be decom-
posed into three Uð1Þ gauge fields, A ¼ A− ⊕ A0 ⊕ Aþ.
While A0 ¼ 0, the Uð1Þ gauge field A� is the so-called
Dirac monopole field with charge g� ¼ �1 [1,68].
In the Abelian regime, one can define the total angu-

lar momentum operator, which commutes with the
Hamiltonian (5), as J ¼ r × ðp − AÞ − Σzr=r, where the
last term corresponds to the three Dirac monopoles [69].
Moreover, as shown in Ref. [70], J is the total angular
momentum operator in the non-Abelian regime as well.
This suggests that the general solutions of the Hamiltonian
are given by superposition of the corresponding angular
momentum eigenstates, which explains the formation of the
angulon. For each Dirac monopole the corresponding
eigenstate is given by the spin-weighted spherical harmon-
ics, nYLMðΩÞ [69,71,72]. Then, the quasiparticle wave
function yielding the spectral function of Fig. 1 can be
written as ΦLMðΩÞ ¼ P

n nYLMðΩÞcnχn, with χn being
the eigenvectors of Σz. Here, the amplitude c�1 corresponds
to the impurity components that interact with the mono-
pole. However, we note that for the regimes ξ ≪ 1 and
ξ ≫ 1 the amplitude vanishes, as shown by the dashed
curve in Fig. 1, which is a consequence of the vanishing
impurity-bath interaction.
In fact, nYLMðΩÞ is already given by the impurity part of

the variational state (8), jLMni, which is the solution for the
linear molecule in the corotating frame. First, this shows
the self-consistency of our method because, unlike in the
other studies [18,23], here the magnetic monopole solution
directly emerges from the variational state (8). More
importantly, however, since a linear molecule in the corotat-
ing frame can be regarded as a symmetric top [73], there is a
correspondence between a nonlinear symmetric-top mol-
ecule and a particle in the field of a monopole. Namely, the
quantum number of the projection of angular momentum on
the body-fixed quantization axis corresponds to the charge of
a Dirac monopole. This provides further insights into the
physics of magnetic monopoles.
The Abelianization of the gauge field after the instability

point is reminiscent of the ’t Hooft–Polyakov monopole,
which reduces to the Dirac monopole after the spontaneous
symmetry breaking [2,3]. In fact, it is possible to introduce a
gauge in which the gauge field is written as A0 ¼ ð1 − κÞr̂ ×
Σ [22,70], which has the same structure as the ’t Hooft–
Polyakov monopole. Furthermore, in this gauge the
Hamiltonian is H0 ¼B½ðJ 0−κΣÞ2−ð1−κÞ2ðr̂ ·ΣÞ2�þA00.
Here, J 0 ¼ Lþ Σ, L ¼ r × p, and Σ correspond to the
total, orbital, and spin angular momentum, respectively.
The Hamiltonian can be further simplified to H0 ¼
BL2 þ 2Bð1 − κÞL · Σþ VðκÞ, where the second term is
nothing but the spin-orbit coupling. This indicates that the
initially spinless linearmolecule behaves like a spin-1 particle
when it interacts with the bath. This phenomenon, the
emergence of the spin degrees of freedom of an initially
spinless particle, is known as the isospin-spin conversion

[58,74,75]. We are confident that the angulon offers a great
opportunity for realization of this phenomenon.
In order to see that the vector potential is truly non-

Abelian for ξ < ξc, one can argue as follows. Assume
there exists a gauge transformation that brings the
vector potential to the form A ¼ A− ⊕ A0 ⊕ Aþ. Using
Eq. (11), 1=ð2πÞ RS2 FϕθdΩ ¼ 2diagð−g; 0; gÞ, where
dΩ ¼ sin θdθdϕ. It is well known that those numbers
are the first Chern numbers (topological invariants) of the
line bundles associated with A−, A0, and Aþ [28]. By
definition, they can take only integer values. This reflects
the well-known fact that Uð1Þ magnetic monopoles are
necessarily quantized. Since g lies in the range of ∼0.4–0.6,
this contradicts the assumption that A is Abelian and we
conclude that it is truly non-Abelian. For non-Abelian
monopoles the above reasoning fails since, in this case, the
only topological invariant is the Chern number of the whole
bundle [76], which is given by 1=ð2πÞ RS2 trðFϕθÞdΩ and
equals zero in our case.
The above discussion reveals that the transition from a

non-Abelian vector potential with no topological restriction
on g for ξ < ξc to an Abelian vector potential, with the
topological restriction that g has to be an integer for ξ > ξc,
is also a topological transition of the underlying vector
bundle. This topological transition is clearly visible in
Fig. 2, where we plot the monopole charge g as a function
of both ξ and ~n0. In the non-Abelian domain (NA), the
monopole charge takes a range of values between zero
and 1. On the other hand, for a large positive ξ value, the
monopole charge is equal to 1 with high precision, which
corresponds to the Abelian region (A). The topological
transition from the non-Abelian to the Abelian monopole
takes place across the angulon instability (I). The fact that
the spectral function of Fig. 1 remains constant for all
values of ξ in the Abelian region strongly indicates that
∂ðE=BÞ=∂B ∝ dκ=dB. As a result, the robustness of the
Abelian domain against the change of parameters can be

FIG. 2. The monopole charge of the angulon L ¼ 1 state, g, as a
function of the dimensionless rotational constant, ξ ¼ ln½B=u0�, and
the dimensionless density, ~n0 ¼ ln½n0ðmu0Þ−3=2�. Topological
transition from the non-Abelian (NA) to the Abelian (A) monopole
takes place in the angulon instability region (I). See the text.
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tested experimentally by measuring the spectral function for
differentmolecules. Furthermore, as themonopole charge can
be identified in terms of the angular momentum of the bath,
κ ¼ i

ffiffiffi
2

p hφ1jŜ1ðΩÞΛ̂yŜ
−1
1 ðΩÞjφ0i, the topological transition,

in principle, is accessible through time-of-flight measure-
ments [77] or momentum-resolved Bragg scattering [78].
In conclusion, we have demonstrated that a rotating

impurity coupled to a many-particle bath (the “angulon
quasiparticle”) can be interpreted as a quantum particle on
the two-sphere interacting with a gauge field of a non-
Abelian magnetic monopole. Intuitively, in the corotating
frame, the cloud of bosons rotates around the molecule fast,
and this rotation induces a gauge field of a magnetic
monopole, similar to the case of electrons orbiting the
nuclei [18]. In the particular setting considered here, a
superfluid helium droplet manifests itself as a Uð3Þ non-
Abelian magnetic monopole in the real space of the
molecular impurity. We demonstrate that the Uð3Þ gauge
field vanishes exactly at the angulon instabilities.
Furthermore, on one side of the instability the gauge field
is truly non-Abelian, whereas on the other side the gauge
field Abelianizes and the components of the impurity
effectively interact with separate Dirac monopoles. The
Abelianization of the gauge field around the instability
corresponds to a topological transition of the underlying
vector bundle. Since the angulon instabilities have been
recently identified in an experiment [51], our results pave
the way for the study of topological transitions and related
physics using molecules in helium nanodroplets.
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