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Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude
modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in
the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement
of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing
oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively,
inducing important physical consequences. These results may open interesting prospects for phase noise
metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our
approach, due to its general character, may apply to various systems.
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Stochastic resonance whereby a small signal gets ampli-
fied resonantly by application of external noise has been
introduced originally in paleoclimatology [1,2] to explain the
recurrence of ice ages and has then been observed in many
other areas including neurobiology [3,4], electronics [5],
mesoscopic physics [6], photonics [7,8], atomic physics [9],
and, more recently, mechanics [10–13]. Implementation of
stochastic resonances involves generally three ingredients:
(i) the existence of metastable states separated by an
activation energy, as in excitable or bistable nonlinear
systems, (ii) a coherent excitation, whose amplitude is,
however, too weak to induce deterministic hopping between
the states, and (iii) stochastic processes inducing random
jumps over the potential barrier. In the classical picture of a
bistable system, this corresponds to the motion of a fictive
particle in a double-well potential periodically modulated in
amplitude by the signal and subjected to noise [14].When an
optimal level of noise is reached, the system’s response
power spectrum displays a peak in the signal to noise ratio,
unveiling the stochastic resonance phenomenon. The reso-
nance occurs as a “bona fide” resonance in a frequency band
around a signal frequency approximately given by the
time-matching condition [15,16], i.e., when the potential
modulation period is twice the mean residence time of the
noise-driven particle. Experimental works on stochastic
resonance are almost exclusively using amplitude modula-
tion going along with additive amplitude noise or multipli-
cative amplitude noise [17–21]. In this case, it corresponds to
a pure one dimensional effect. Few studies take advantage of
a bidimensional phase space by, e.g., using phasemodulation
and/or phase noise (i.e., phase random fluctuations of input
signal) [22,23]. Most of them use amplitude noise to
demonstrate amplitude stochastic resonance, or introduce
noise in the form of the response of a stochastic oscillator
[24]. However, in the latter scheme, neither the noise nor
the modulation are controlled, thus preventing unveiling

the specific roles of phase modulation and phase noise in
stochastic resonance.
In this Letter, stochastic resonance is implemented in a

nonlinear nanomechanical oscillator forced close to its
resonant frequency. It enables, in a bidimensionnal phase
space, the implementation of phase stochastic resonance
observed simultaneously both on the phase and amplitude
response of the oscillator. It is here demonstrated by
achieving the stochastic enhancement of a phase modulated
signal by phase noise observed on the bidimensional
response of the oscillator. This opens new avenues for
stochastic resonance in bidimensional systems by allowing
for instance stochastic amplification of mixed phase-
amplitude modulated signals by complex value noise.
We highlight that the system’s response can be projected
on any variable in phase space and that the amplification
depends on the chosen basis. Finally, we derive a stochastic
nonlinear amplitude equation for the forced stochastic
Duffing oscillator, which describes qualitatively well our
system, and show that phase noise acts multiplicatively
inducing important physical consequences.
The forced nanomechanical oscillator consists of a

suspended InP photonic crystal membrane which acts as
a mirror in one arm of an interferometer fed with an He-Ne
laser. The membrane is activated by underneath integrated
interdigitated electrodes driven by an ac-bias voltage VðtÞ
(see Fig. 1). This voltage induces an electrostatic force on
the oscillator which drives its out-of-plane motion as
described in Ref. [25]. The oscillator is placed in a vacuum
chamber with a pressure of about 10−4 mbar at room
temperature. The phase Φ and the amplitude modulus R of
the oscillator’s motion are retrieved by use of a balance
homodyne detection. From the recorded time traces of Φ
and R, we can reconstruct the polar plots with the two
quadratures X ¼ R cosðΦÞ and Y ¼ R sinðΦÞ.
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The applied voltage, and therefore the applied electro-
static force, is in the form of [26]

VðtÞ ¼ Vac cos fΩdtþ Δϕsgn½cos ðΩmtÞ� þ ξðtÞg: ð1Þ

Here, Vac is the amplitude of the applied voltage,
while Ωd denotes the resonant driving frequency. A phase
modulation is added; it displays a square waveform
described by the sign function sgn, at frequency Ωm
and a phase deviation of Δϕ. Gaussian phase noise ξðtÞ
of zero-mean and standard deviation ξRMS (bandwidth
Bϕ ¼ 10 kHz such that Ωm ≪ Bϕ) is also applied on the
nonlinear dynamic system. Under quasiresonant forcing of
the mechanical fundamental mode, a hysteresis behavior
becomes prominent for Vac > 5 V and two stable fixed
points coexist in the bidimensional phase space of the
oscillator (Fig. 1, bottom left and right). In the following,
Vac is set to 9 V in order to be deeply in the bistable regime;
the driving frequency is set inside the hysteresis region at
Ωd=2π ¼ 2.824 MHz in order to get equal probability of

residence in each state (see Supplemental Material [27])
and the system is systematically initially prepared in its
upper state.
In the bistability regime, jumps between the two stable

states can be induced by applying a slow modulation
(Ωm ≪ Ωd) with a sufficiently high phase deviation, phase
noise strength or both. These jumps are investigated by
tracing the amplitude and phase evolution of the funda-
mental mode with time and are also pictured in the X-Y
phase plane. In the case of pure phase modulation, the
system can transit or not from one state to the other
depending on the values of Ωm and Δϕ. Beyond the cutoff
frequencyΩm;c=2π ¼ 1 kHz, which is directly linked to the
oscillator’s linewidth of 0.9 kHz [23], the output signal is
not synchronized with the input signal, in amplitude or
phase. For Ωm=2π ¼ 500 Hz, every jumps in the input
signal translate into a jump in the output signal for Δϕ >
1.83 rad (see Supplemental Material [27]). Similarly, in the
case of pure noise-induced switching, the system starts to
transit between the two 2D states, in amplitude and phase as
noise strength increases. The occupancy between these two
states becomes equiprobable for values of ξRMS close to
0.52 rad in our device. Such noise-induced transitions can
also be quantified by the Kramers rate TK ¼ 1=τK , which is
the inverse of the average time required to cross over the
barrier [28] and reaches a value close to 100 Hz (see
Supplemental Material [27]). Contrary to amplitude noise,
which amounts to additive noise, phase noise acts here as a
multiplicative noise. This feature is revealed through the
nonconstant dependence of the phase difference Δθ
between the two equilibria for increasing noise strengths
(see Fig. 2) and is highlighted by the fourth term in the
right-hand side of Eq. (4). At weak phase noise
(ξRMS < 0.4 rad), uncertainties on the phase difference
are large because the probability of residence in the lower
state is weak (<5%) and thus this state gets difficult to
observe. Conversely, at strong phase noise (ξRMS > 0.6 rad),
the probability of residence of the upper state reduces,
and this state is hardly observable.
The stochastic synchronization between the external

noise and the weak coherent signal that occurs in stochastic
resonance takes place when the average waiting time
between two noise-induced interwell transitions (TK) is
comparable to half the period of the periodic signal
(TΩ ¼ 2π=Ωm). In order to match this time scale condition,
modulation frequency Ωm in phase is set at 50 Hz.
The deviation Δϕ is also set to 0.09 rad [≪1.56 rad, the
hysteresis width (Fig. 1)], a far too weak value to let the
system switch periodically from one state to the other (see
Fig. 3 upper line). When increasing the noise strength,
occasional transitions occur, weakly locked to the modu-
lation signal. For ξRMS ¼ 0.49 rad, the transitions get
stochastically synchronized with the modulation (see
Fig. 3). Further increasing the noise distorts the hysteresis
cycle and the system drops to its lower state.

FIG. 1. (Top left) A scanning electron microscopic view of the
device shows the membrane (thickness of 260 nm and a
10 × 20 μm2 surface) forming the mechanical oscillator (purple)
and the interdigitated electrodes (yellow) underneath, at a distance
of about 400 nm. (Top right) Finite element model (F.E.M.)
simulation of the fundamental mechanical mode under study with
enhanced out-of-plane displacement for clarity. (Bottom left)
Amplitude R and (bottom right) phase Φ spectra of the driven
oscillator response in a frequency sweep-up and sweep-down
experiment with Vac ¼ 9 V, Δϕ ¼ 0, and ξRMS ¼ 0; the theoreti-
cal response is displayed in red dashed lines in both spectra.
The driving frequency Ωd=2π ¼ 2.824 MHz (dashed lines) lies
close to the linear fundamental mechanical resonance at
Ω0=2π ¼2.822 MHz (i.e., zero normalized detuning). Normalized
detuning is defined as ðΩd − Ω0Þ=Ω0.

PRL 119, 234101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 DECEMBER 2017

234101-2



Quantification of achieved amplification relies on a
discrete Fourier transform (DFT) of the time traces. The
spectral power amplification is then given by the ratio
between the strength of the peak in the DFT at Ωm for a
given noise intensity and its strength without added noise.
For both variables, R and Φ, evolution of the spectral
amplification is observed as a function of the phase noise
strength and are plotted on Figs. 4(a) and 4(b). It presents a
bell-shaped maximum which reaches, for the amplitude
variable, a value up to 6.3 and peaks at ξRMS ¼ 0.44 rad
[see Fig. 4(a)]. This noise strength is close to the one at
which the system has a Kramer’s rate of about 100 Hz with
only noise applied. Under the same conditions, amplifica-
tion of the phase variable is also shown in Fig. 4(b). It
reaches experimentally a value up to 3 for the same phase
noise strength. A double peak is clearly visible in the
numerical spectral amplification of the phase. The first
peak is indeed attributed to the synchronized hopping
between the two metastable states, whereas the other peak
is due to an internal state resonance [29]. For higher noise
strength, the noise-induced effective detuning makes a
longer residence time in the lower state, and the
Kramers rates are not balanced anymore.
To gain more insight into the observed dynamics, we

compare our results to theoretical and numerical predic-
tions of a stochastic amplitude equation. Fits of the
experimental results are obtained by modeling the nano-
electromechanical oscillator by a simple forced stochastic
Duffing oscillator [30] whose dynamics can be described,
in the limit of small injection and dissipation of energy, by,

ẍ ¼ −x − ϵμ_x − αx3

þ ϵ3=2F cos½ð1þ ϵσÞtþ ϵϕmðtÞ þ ϵ
ffiffiffiffiffi
η0

p
ΔWϕ�; ð2Þ

where xðtÞ accounts for the displacement of the membrane
and ϵ is a small control parameter (ϵ ≪ 1). This parameter

is introduced to properly balance the scaling between the
dissipation and injection of energy in the system, and also
control the frequency detuning. The natural frequency has
been rescaled to one (ω0 ¼ 1), μ ≪ 1 is the damping
coefficient that accounts for dissipation of energy, α
accounts for the nonlinear stiffness of the spring, which
is positive (negative) for soft (hard) spring [31] and F the
strength of the driving. The near-resonant drive has an
angular frequency of ωd ¼ 1þ σ, where σ ≪ 1 stands for
the detuning between the drive and the natural resonant
frequency. The system is also subject to a slow phase
modulation ϕmðtÞ ( _ϕm ≪ ω0ϕm) and to a phase noise term
in the form of a Wiener process ΔWϕ with Gaussian noise
strength η0. In the conservative limit and for small displace-
ments, the system exhibits harmonic motion with a small
arbitrary amplitude D such that xðtÞ ¼ Re½Deit�. When
considering the nonlinear terms, dissipation and forcing,
the displacement of the membrane response can be
approximated by [31,32]

xðtÞ ¼ ϵ3=2DðT ¼ ϵtÞeiftþϵ½σtþϕmðtÞþ ffiffiffiffi
η0

p ΔWϕ�g

þ αϵ9=2

8
D3ei3ftþϵ½σtþϕmðtÞþ ffiffiffiffi

η0
p ΔWϕ�g þ c:c:þ oðϵ5Þ;

ð3Þ

where the envelope of the oscillations D is promoted to a
temporal variable [31–33], T accounts for the slow tem-
poral scale ( _D≃ ϵD and D̈≃ ϵ2D), and the symbol c.c.
stands for complex conjugate. Introducing the above ansatz
in Eq. (2) to order ϵ3=2 and using the rules of calculus in
stochastic normal form theory [34] one finds the stochastic
nonlinear amplitude equation

FIG. 3. The response of the system, now driven by a force
combining a weak phase modulation and an increasing phase
noise is shown. (From left to right) Experimental time traces
recorded on a time scale of 300 s of the amplitude R and phase Φ
of the fundamental mode for increasing noise strengths, with
associated experimental and theoretical polar plots. (From upper
to lower lines) Evolution of these four panels for increasing
standard deviation ξRMS.

FIG. 2. Simulated (open squares) and experimental (red tri-
angles) polar angle difference between the two stable states for
increasing noise strengths. Inset: Experimental polar plots
with experimental values of ξRMS ¼ 0.52 rad and Ωd=2π ¼
2.824 MHz.
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dD
dT

¼ −
�
μ

2
þ i

�
σ þ dϕm

dT
þ ffiffiffiffiffi

η0
p

ξ

��
Dþ 3iα

8
jDj2D −

iF
2
;

ð4Þ

where ξ ¼ dΔWϕ=dT is a zero mean and delta-correlated
white Gaussian noise term. Note that ϕm is a slow phase
modulation, that is, dϕm=dt ¼ ϵdϕm=dT. To derive the
above model, we have considered ansatz (3) as a change of
variable. Here, the Stratonovich prescription for noise has
been adopted. Namely, the stochastic term can induce a
nonzero drift, hξðTÞDðTÞi ≠ 0. Note that even though
Eq. (2) would give rise to additive noise with time-
dependent coefficients in a Fokker-Planck equation, the
reduced equation [Eq. (4)] for the response amplitude of the
oscillations satisfies a stochastic differential equation with
multiplicative noise as a result of the stochastic normal-
form derivation [34].
Stochastic numerical simulations of Eq. (4) are per-

formed with the help of the XMDS2 package [35]. We use
the semi-implicit numerical scheme which converges to the
Stratonovich integral. The time step is kept fixed in the
simulation and is chosen to be dT ¼ 0.1. The slow phase
modulation is sinusoidal with an amplitude Δϕ ¼ 5 × 10−5

and an angular frequency Ωm ¼ 2π=2 × 105. The detuning
is σ ¼ 1.77 × 10−3. The model reproduces well the bistable
response in amplitude and phase of our nanoelectrome-
chanical oscillator (see Fig. 1, bottom), as well as the
temporal evolution of the response in amplitude or phase, in
the case of pure phase modulation, pure phase noise (see
Supplemental Material [27]) and stochastic resonance (see
Figs. 3 and 4). Moreover, multiplicative noise shall trans-
late into a shift of the operating point in the hysteresis and
thus into an effective detuning in Eq. (4) which reduces to
σeff ¼ σ þ η0=2. Physically, this translates in a drift of the
operating point for increased noise strengths, a signature of
the multiplicative nature of the added noise, as observed in

our experiment (see Fig. 2). The measured Δθ is slightly
smaller in the experiment compared to theory presumably
because of extra low-frequency noise sources, which are
not taken into account in the model.
Stochastic resonance amplification of the modulated

signal is here limited by the relative orientation of the
modulation and of the minimal energy path between the
two basins of attraction, which is almost in a direct straight
line [see Fig. 4(c)]. In the same frame, the added phase
modulation shakes the upper state preferentially in the
azimuthal direction. These two orientations being not
parallel, higher amplification value cannot be achieved in
this configuration. This reveals the importance of the
modulation format of the signal: optimal stochastic reso-
nance would certainly require a mixed amplitude-phase
format to follow the minimal energy path in the nano-
mechanical oscillator phase space. The distribution of the
two states in the phase plane gets also distorted: The system
switches between a symmetric branch (with a quasicircular
state in the phase portrait) to an asymmetric branch (with an
elongated state in the polar plot). Such distortion is
reminiscent to thermal noise squeezing observed, e.g., in
parametrically driven oscillators [36–39].
In conclusion, we have demonstrated phase stochastic

resonance with phase noise in a bidimensional nonlinear
oscillator consisting of a nanoelectromechanical device.
The applied phase noise reveals acting as a multiplicative
noise on the system, which introduces an effective detuning
that plays a crucial role in the residence probability
asymmetry. The derived stochastic amplitude equation (4)
is a universal model that describes the evolution of the
envelope of the oscillations near a nonlinear resonance and
subjected simultaneously to phase noise and to a phase
modulation. That is, it applies to any nonlinear oscillator
with such forcing provided one makes use of a suitable
nonlinear and periodic change of variables in the initial
equations that describe the system. Our model applies to,

FIG. 4. (a) Experimental (red triangles) and theoretical (open black squares) spectral amplification in amplitude R as a function of
phase noise strength. (b) Experimental (blue circles) and theoretical (open black stars) spectral amplification in phase Φ as a function of
phase noise strength. Theoretical curves have been obtained by use of Eq. (4). (c) Experimental polar plot for ξRMS ¼ 0.44 rad
(maximum amplification), highlighting the shape of the two stable points as well as the directions imprinted by the modulation on the
input phase or amplitude. The two dashed gray lines are a guide for the eye, indicating the two distinct amplitude states, and the dotted
white line highlights the threshold.
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e.g., dispersive optical bistability that plays an important
role in nonlinear optical science [40] and can thus shed new
light on coherent processes involving phase fluctuations in
these systems [41]. Such stochastic resonance obtained by
the assistance of phase noise may also enable various noise-
aided applications, including signal transmission [42,43],
in particular, involving novel coherent schemes such as the
phase key shifting protocol, or metrology with improved
detection in noise-floor limited systems [18,44,45].
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