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We study the sequential breakup of E=A ¼ 24.0 MeV 7Li projectiles excited through inelastic
interactions with C, Be, and Al target nuclei. For peripheral events that do not excite the target, we
find very large spin alignment of the excited 7Li projectiles longitudinal to the beam axis. This spin
alignment is independent of the target used, and we propose a simple alignment mechanism that arises from
an angular-momentum-excitation-energy mismatch. This mechanism is independent of the potential used
for scattering and should be present in many scattering experiments.
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The spin polarization or alignment of exit-channel
fragments produced in reactions not only provide insight
into the active reaction mechanism but also enable structure
studies and many applications. For example, the generation
of aligned nuclear spins, the subject of the present Letter,
empowers g-factor studies and thus gives insight into
nuclear wave functions [1,2]. Spin-aligned molecular triplet
states allow the generation of highly polarized hydrogen
targets through spin transfer [3,4]. This Letter provides an
example of, and an explanation for, a previously unappre-
ciated mechanism for creating large longitudinal spin
alignments in scattering experiments.
In compound [5–8], quasielastic [9], and deeply inelastic

reactions [10–15], the reaction orbital angular momentum
L dwarfs any intrinsic spin carried by the projectile or
target. The exit-channel fragments acquire spin from the
large reservoir of L and thus are characterized by transverse
alignments with small projections on the beam axis. These
alignments can be so strong that particles emitted from the
spinning fragments exhibit a forward-backward preference
as they cast off ejectiles perpendicular to the spin direction,
a fact that has been used for fragment-spin determination
[10,12,15]. The cases for longitudinal alignment in reac-
tions dominated by the strong interaction are usually
limited to modest modifications of the spin projections
from a uniform distribution [16,17]. Large longitudinal
alignment has been seen in projectile fragmentation [18],
though not at the level reported in this and a related work
[19]. On the other hand, at relativistic energies, Coulomb
excitation will produce a large longitudinal alignment due
to the Lorentz contraction of the E field [20,21].
The active mechanism for producing highly aligned

inelastically scattered 7Li nuclei, studied in the present
Letter, does not have its origin in the Coulomb field
and is independent of the reaction partner (i.e., target).

The observed alignment is reproduced by a standard
nuclear reaction model [22] and is a consequence of an
angular-momentum-excitation-energy matching condition
that requires the reaction plane to tilt when the beam energy
exceeds an excitation-energy-dependent threshold. This
condition is unrelated to the intrinsic spins of the fragments
(not a spin-orbit effect) and is most easily visualized, and
perhaps observed, in nuclei with cluster structure where
the excitation changes the orbital angular momentum, l,
between the internal cluster pair. The origin of the matching
condition generating alignment is identical to the condition,
deduced by Brink, that angular-momentum conservation
imposes on single-nucleon transfer reactions [23]. Namely,
there is a particular kinetic-energy change, or Q-value,
which matches the change in nucleon orbital momenta for
optimum capture.
In our study, large spin alignment of excited 7Li

projectiles was observed with C, Be, and Al targets.
However, this Letter will focus on the reaction with 12C
since it has zero spin, and the large separation between its
ground and first excited state allows for selecting unexcited
target nuclei in the exit channel.
The data presented in this Letter were obtained at the

Texas A&M Cyclotron Institute, which provided a 7Li
beam at 24.0 MeV=A that impinged upon targets with
thicknesses around 10 mg=cm2. Two annular Si-CsI(Tl)
telescope arrays, one looking through the hole of the other,
were used to detect the pair of breakup fragments from 7Li�.
The upstream array used an 85-mm-diameter (3-cm-
diameter hole) segmented Si (32 rings and 48 pie-shaped
sectors) placed 15 cm downstream from the target. The
downstream telescope used a 70-mm-diameter (22-mm-
diameter hole) segmented Si (48 incomplete rings and 16
pies) and was placed 35 cm downstream from the target.
Each telescope had 16 pie-shaped 2-cm-thick CsI(Tl)
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crystals behind the Si, allowing us to measure the energy
and determine the particle type of the fragments. This setup
provided a polar angular range of 1.8° to 16°. Corrections to
the data due to the geometric detection efficiency were
determined by Monte Carlo simulations.
Note that 7Li becomes unbound to αþ t breakup at

2.467 MeV, and this is the only open channel available
for the first two unbound excited states, E� ¼ 4.63 and
6.68 MeV with Jπ ¼ 7=2− and 5=2−, respectively. Both
of these states are seen in the αþ t invariant-mass
reconstruction shown in Fig. 1(a). After reconstructing
the 7Li� momentum, 2-body kinematics was used to
deduce the target’s excitation energy, and the recon-
structed distribution for 12C is shown in Fig. 1(b). The
expected resolutions from Monte Carlo simulations are
shown as the blue dashed lines. This Letter only
discusses events where 7Li is excited to the Jπ ¼ 7=2−

state while 12C remains in its ground state. These events
are selected by the gates G1 and G2 shown in Figs. 1(a)
and 1(b), respectively.
Using the standard theory of angular correlations

[19,24], the magnetic-substate distribution of the 7Li�
can be extracted from the fragment correlation angles ψ
and χ. Here, ψ is the center-of-mass angle of the breakup
with respect to the beam axis, and χ is the center-of-mass
angle of the breakup in the plane perpendicular to the beam
axis, with the x axis defined by the exit-channel scattering
plane [diagrammed in Fig. 2(b)].
The efficiency-corrected angular correlations are shown

in Fig. 2(a). There is a significant enhancement at
cosðψÞ ¼ 0 corresponding to a preferred emission of decay
fragments perpendicular to the beam axis. This means that
the internal orbital angular momentum l of the αþ t pair
in 7Li� is preferentially aligned along the beam axis. The
weights of the Legendre polynomial contributions are
related to the spin density matrix of 7Li�, ρJm1;m2

, for which
the diagonal elements give the magnetic-substate popula-
tions [24]. The Legendre-polynomial decomposition for
l ¼ 3 is shown in Fig. 2(c). The angular correlations and
decomposition are almost identical to that observed in the
previous work with a secondary 7Be beam and a 9Be target

[19]. The deduced magnetic-substrate distribution is shown
in Fig. 2(d).
The level of alignment is quantified by the scalar,

A ¼
X
mf

3mf
2 − JðJ þ 1Þ
Jð2J − 1Þ ρJmf;mf

; ð1Þ

where A ¼ 1ð−1Þ corresponds to the largest possible
alignment along (transverse to) the quantization axis.
The magnetic-substate distribution observed corresponds
to a value of A ¼ 0.49� 0.01. This is quite large compared
to other reactions, including the longitudinal alignment of
A ¼ 0.35ð10Þ observed in the population of a high-spin
isomer from projectile fragmentation [18].
Large longitudinal alignment is predicted by both a

rotational (deformed) and a 3-body cluster model.
However, the former does not describe the angular corre-
lations as well as the latter. Focusing on the cluster model,
the population of the Jπ ¼ 7=2− resonance is modeled as a
direct, one-step inelastic excitation of the two-cluster
(αþ t) 7Li system. The cross section is proportional to
the squared modulus of the transition amplitude, or T
matrix, Tmi;mf

. This is calculated in the distorted-wave
Born approximation (DWBA) [22] as a function of the
initial, mi, and final, mf, projections of the 7Li spin with
respect to the beam axis. The distorted waves describing
the relative 7Li-12C motion in the initial, χiðRÞ, and final,
χfðRÞ, channels are solutions of a phenomenological
central optical potential ULiCðRÞ, R being the relative
7Li-12C coordinate. The 7Li wave functions ϕi;mi

ðrÞ
(Jπ ¼ 1=2− ground state, orbital angular momentum
l ¼ 1) and ϕf;mf

ðrÞ (excited Jπ ¼ 7=2− state, l ¼ 3) are
computed using a phenomenological α − t interaction that
reproduces the 7Li particle decay threshold. In order to
avoid complications inherent to the treatment of the
continuum, the final Jπ ¼ 7=2− state is modeled with a
very weakly bound wave function (quasibound approxi-
mation). With these ingredients, the transition amplitude is

Tmi;mf
¼
Z

χ�fðRÞϕ�
f;mf

ðrÞΔðR; rαC; rtCÞ

× χiðRÞϕi;mi
ðrÞdrdR; ð2Þ

where the transition potential is

ΔðR; rαC; rtCÞ ¼ ULiCðRÞ −UαCðrαCÞ − UtCðrtCÞ: ð3Þ

The α-12C and t-12C effective interactions, UαCðrαCÞ and
UtCðrtCÞ, are modeled by central phenomenological optical
potentials depending on the corresponding distances. The
optical-model parameters for the α-12C and 7Li-12C poten-
tials were obtained from the literature [25]. The t-12C
potential was extrapolated from the 3He-12C interaction;
then, the potential parameters were constrained from a fit
of the angular distributions and correlations. The α − t
potential used was also constrained by this fit. These

(a) (b)

FIG. 1. Experimental distributions of excitation energy for the
(a) 7Li projectile and (b) the 12C target.
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3-body fully angular-momentum-coupled cluster-model
calculations were done with FRESCO [22].
The possibility that the reaction was dominated by

Coulomb excitation was also considered. The cluster-model
calculations predict the Coulomb excitation cross section
(∼0.4 mb) to be 2 orders of magnitude smaller than for
nuclear excitation (∼30 mb). This was corroborated by
calculations for Coulomb excitation that properly take into
account relativistic effects [26,27]. This is not surprising
because the beam energy is modest and the targets have low
Z, consistent with a previous experiment [28]. In the cluster-
model calculations, the extracted alignment was not affected
by removing the Coulomb potential from the interaction.
A change in the magnitude of the in-reaction-plane linear

momentum corresponds to a change in the magnitude of the
reaction orbital angular momentum ΔL and a center-of-
mass kinetic-energy loss. For the reactions studied, the
target nucleus remains in its ground state, so all of the
possible center-of-mass kinetic-energy loss goes to exciting
7Li. These quantities are easily related if a fixed radius R
is assumed between the projectile and target during the
reaction. To obtain an upper limit, it is assumed that
pin;pout⊥R, giving the Newtonian result,

ΔL ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μECM

p  
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E�

ECM

s !
; ð4Þ

where μ is the reduced mass of the system and ECM is
the kinetic energy in the center-of-mass frame. With an
excitation energy of E� ¼ 4.6 MeV, a beam energy of
24.0 MeV=A, and R ¼ 5 fm (using a touching-spheres
approximation), one obtains ΔL < 1ℏ for the 7Li-12C
system. This means that a change in magnitude of the
reaction orbital angular momentum cannot excite 7Li to the
4.6-MeV state because ΔL ≠ Δl ¼ 2ℏ. Figure 3 shows

Eq. (4) plotted with the parameters relevant for the
7Liþ 12C reaction studied (red dot-dash line).
To sidestep this mismatch, the final value of L can

remain the same but tilt, giving it projection M ¼ Δm, to
allow the projectile to acquire spin. This argument for
angular-momentum-excitation-energy matching suggests
the observed alignment phenomenon is a threshold effect.
Raising the beam energy further mismatches the angular
momentum and excitation energy, but lowering it allows for
nontilting of the exit-channel reaction plane. In Fig. 3, the
cluster-model calculations predict the alignment will dis-
appear, eventually changing sign, as the beam energy is
lowered (black solid line). When the excitation energy can
be achieved with a 2ℏ reduction in the reaction orbital
angular momentum, tilting is no longer required to excite the
state, and the alignment disappears. Diagrams for possible
nontilting (left) and tilting (right) angular-momentum cou-
pling solutions are indicated by the insets in Fig. 3.
The consequence of L tilting on the alignment of the

projectile’s spin can be studied by examining the properties
of the T matrix. The normalized projection of the squared T
matrix onto mf (summing over mi) provides a prediction
for the final magnetic-substate distribution. Using the
definition in Eq. (2), we can write the T matrix for the
same incoming and outgoing L (assuming no spin-flip of
the triton and employing the angular-momentum-excitation-
energy matching argument; i.e., only tilting of L is allowed)
as the expression

TL
mi;mf

∝
X

μi;μf;ms

hli; μi; 1=2; msjJi;mii

× hlf; μf; 1=2; msjJf;mfi

×
Z

Y
lf
−μfðr̂ÞYK

Mðr̂ÞYli
μi ðr̂ÞdΩr

×
Z

YL
−MðR̂ÞYK

MðR̂ÞYL
0 ðR̂ÞdΩR; ð5Þ

(a)

(d)

(b)

(c)

FIG. 2. (a) The efficiency-corrected angular correlations from
the data for the entire angular range measured. (b) The definitions
of angles ψ and χ in the rest frame of 7Li. (c) The Legendre
polynomial contributions from the fit to the angular correlations
projected onto the cosðψÞ axis. (d) The resulting extracted
magnetic-substate distribution.

FIG. 3. Equation (4) is plotted for E� ¼ 4.6 MeV and R ¼
5 fm (red dot-dash line). The predicted alignment from the
cluster-model calculations in the angular range 5° < θCM <
15° as a function of beam energy is also shown (black solid
line). When ΔL ¼ 2ℏ is allowed, the alignment disappears
completely (A ¼ 0), corresponding to no tilting (left). For larger
energies only tilting is allowed (right).
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where K ¼ 2 is the dominant order of the interaction. Here,
Kmust be even because there is no change in parity between
the initial and final states. The two integrals of spherical
harmonics in Eq. (5) are directly proportional to Clebsch-
Gordan coefficients, and the resulting TL matrix is

TL
mi;mf

∝ hJi; mi;K;MjJf;mfihL; 0;K;MjL;Mi: ð6Þ

The first Clebsch-Gordan coefficient in Eq. (6) repre-
sents a change in the internal cluster orbital angular
momentum of the projectile. This is coupled to a change
in the relative orbital angular momentum between the
projectile and target through the second (external)
Clebsch-Gordan coefficient. Note that, in the external
Clebsch-Gordan coefficient, the incoming relative angular
momentum L has no projection along the beam axis, but
after the interaction, L can have a finite spin projection,
M ¼ Δm. The values for the external Clebsch-Gordan
coefficient in Eq. (6) converge for increasing L, resulting
in the same alignment at higher energies. This would
explain the fact that the level of alignment and angular
correlations observed for 24.0 MeV=A 7Li� are very similar
to the previous experiment with 65.5 MeV=A 7Be� [19].
The relevant squared Clebsch-Gordan coefficients in

Eq. (6) are shown in Figs. 4(a) and 4(b). The internal
Clebsch-Gordan coefficient prefers transitions mi ¼
�3=2 → mf ¼ �7=2. The external Clebsch-Gordan coef-
ficient of Eq. (6) completely suppresses M ¼ �1 transi-
tions. This is due to the parity restriction that K ¼ 2,
so only even components of M contribute, similarly to
symmetry arguments in previous studies of the polariza-
tions perpendicular to the reaction plane in inelastic

excitations [29,30]. This coefficient also enhances M ¼
�2 transitions relative to M ¼ 0 transitions. Multiplying
these together gives us the square of the TL matrix,
Fig. 4(c), which is very similar to the cluster-model
calculation, Fig. 4(d). The transitions mi ¼ �1=2 → mf ¼
�5=2 are also preferred, resulting in an increase (a “spin-
up”) of the 7Li� spin projection along the beam axis. The
similarities between the simple Clebsch-Gordan prescrip-
tion and the cluster-model calculation are striking.
For a single or a few L waves, large oscillations in

alignment are expected due to the high-order spherical
harmonics in the wave function required for the target-
projectile relative motion. This is corroborated by the
cluster-model calculations of the alignment, as a function
of angle for a single J , where J represents the addition of
L and the incoming spin of the projectile. The predicted
alignment for J ¼ 35.5, where the calculated cross section
peaks, is shown in Fig. 4(e) by the blue dashed line. When
allowing mixing of the many L waves that contribute to
the reaction, the oscillations in alignment with angle are
washed out [solid red line in Fig. 4(e)]. This kind of
interference in alignment has previously been observed
[6,31] and discussed for differential cross sections [32].
Note that L-wave mixing around Lgraz further suppresses

mf ¼ �1=2, as can be seen by comparing Fig. 4(f) to
Fig. 4(g), though the magnitude of this effect is small. Even
with this suppression, these components are still larger in
the cluster-model calculation than in the data. Further study
is needed to explain this additional suppression.
In summary, large spin alignment of excited 7Li projec-

tiles longitudinal to the beam axis was observed in inelastic
excitations where the target remained in its ground state.

FIG. 4. The most prominent Clebsch-Gordan coefficients from angular-momentum conservation in the squared transition amplitude,
jTmi;mf

j2, come from (a) exciting the internal motion of the αþ t and (b) the relative angular momentum of 7Liþ 12C. Results are shown
for grazing Lin ¼ Lout ¼ Lgraz ¼ 35. Panel (c) shows the multiplication of the two. (d) The squared transition amplitude calculated by
the cluster model normalized to the scale of panel (c). (e) The predicted alignment, as a function of angle, from cluster-model
calculations for all J (red solid line) and for a single J ¼ 35.5 (blue dashed line), as well as the data (circles). Panels (f) and (g) are
normalized projections of panels (c) and (d), respectively, showing the predicted magnetic-substate distributions.
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When the excitation energy is small compared to the beam
energy, the reaction plane is forced to tilt in order to
conserve angular momentum and energy. The relevant
Clebsch-Gordan coefficients ensure that the spin projection
of the excited projectile increases along the beam axis.
We believe we have uncovered a previously unappre-

ciated alignment mechanism that was buried in standard
nuclear scattering theory. This mechanism is independent
of the potential used for scattering, so it should be manifest
in many beam experiments. It may in fact be the active
mechanism in the production of highly aligned fragments,
at energies that are not highly relativistic, enabling g-factor
measurements [1].
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