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Kinetic Monte Carlo methods such as the Gillespie algorithm model chemical reactions as random walks
in particle number space. The interreaction times are exponentially distributed under the assumption that
the system is well mixed. We introduce an arbitrary interreaction time distribution, which may account for
the impact of incomplete mixing on chemical reactions, and in general stochastic reaction delay, which may
represent the impact of extrinsic noise. This process defines an inhomogeneous continuous time random
walk in particle number space, from which we derive a generalized chemical master equation. This leads
naturally to a generalization of the Gillespie algorithm. Based on this formalism, we determine the modified
chemical rate laws for different interreaction time distributions. This framework traces Michaelis–Menten-
type kinetics back to finite-mean delay times, and predicts time-nonlocal macroscopic reaction kinetics as a
consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and
show key features of reactions under local nonequilibrium.
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Chemical reactions are the result of the interaction
between different system components. Classically, it is
assumed that, within a given support volume, reactants are
well mixed. In other words, all reactants are equally
available to react at a constant rate. In this case, inter-
reaction times due to intrinsic stochastic variability can be
shown to be exponentially distributed [1,2]. These obser-
vations form the basis of kinetic Monte Carlo (KMC)
methods, such as the Gillespie algorithm [2], which
comprise an important class of models and techniques
for the stochastic simulation of reactive systems and
population dynamics in general [3,4]. The probability
distribution of chemical species numbers follows
Markovian dynamics in time, which are described by the
classical chemical master equation. The corresponding
macroscopic dynamics are the familiar local rate laws
for species concentrations [5,6]. Since chemical reactions
are essentially contact processes leading to nonlinear
dynamics, this type of framework finds broad application
in population dynamics, modeling scenarios as varied as
biological cellular processes, disease spread in epidemiol-
ogy, dynamics on and of networks, animal species inter-
actions in ecology, quantum molecular dynamics, and
chemical reactions in geological media [7–13].
Complex dynamics in heterogeneous environments may

manifest themselves in terms of effective, distributed delay
times affecting the reaction processes. Transport processes
are often at the core of non-Poissonian reaction dynamics,
since they are the limiting factor on reactant mixing
[14–17]. Medium heterogeneity may affect the efficiency
of tracer particles in exploring their surroundings [18–21],
thus leading to broad distributions of interreaction times
or reaction rate constants [22]. Furthermore, the nonlinear
character of reactions may lead to the amplification of local

concentration fluctuations, enhancing the effects of trans-
port limitations and significantly slowing down reactions
[23]. Heterogeneity and fluctuation processes not inherent
to the chemical reaction itself are referred to as extrinsic
noise. Modeling the impact of extrinsic noise on chemical
reactions in the KMC sense requires a framework capable
of representing more complex interreaction times, which
describe, for example, transport-induced delays or unre-
solved reaction sequences [24–28].
The classical chemical master equation rests on two

pillars: Exponential waiting times between reactions, and
statistical equivalence of all particles of a given species.
The present work removes the first assumption and,
thereby, implicitly relaxes the second, providing a unified
theoretical framework to quantify the impact of arbitrary
interreaction times. The continuous time random walk
(CTRW) provides a systematic starting point to account
for general waiting time distributions between reaction
events [29–33]. Building from CTRW theory, we derive a
generalized chemical master equation capable of account-
ing for nonexponential interreaction times and the resulting
non-Markovian character of reaction dynamics in time.
In the KMC spirit, the dynamics are represented in terms
of a random walk in particle number space rather than in
physical space. To the best of our knowledge, this Letter
provides the first instance of a generalized chemical master
equation for a KMC framework that does not assume
Markovian (i.e., exponential) waiting times. This allows
us to rigorously describe the effects of intrinsic and
extrinsic variability of the waiting times and make corre-
sponding predictions about the large-scale behavior. Our
approach derives Michaelis–Menten-type kinetics as a
result of random delay times with a finite mean and
predicts time-nonlocal macroscopic reaction kinetics as a
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consequence of broadly distributed delays. The latter show
weak ergodicity breaking, a fingerprint of anomalous
transport [34–39], and exhibit key features of local non-
equilibrium such as power law mass decay.
Framework.—In order to cast the dynamics of ms differ-

ent species that participate in mr different reactions into a
CTRW framework, we first define the state space. The
chemical species are denoted by Sj, where j ¼ 1;…; ms; the
corresponding particle numbers are denoted by nj. The state
vector of particle numbers is n ¼ ðn1;…; nms

Þ⊤, where the
superscript ⊤ denotes the transpose. During a reaction i the
loss (gain) in particle number nj is denoted by rij ∈ N
(pij ∈ N). These coefficients are typically, but need not be,
given by the law of mass action. Thus, the impact of reaction
i on the state space can be expressed as

X
j

rijSj →
X
j

pijSj: ð1Þ

The stoichiometric coefficients sij ¼ pij − rij denote the net
change in each species j due to each reaction i. A single
event of reaction i is characterized by the reaction waiting
time τrðiÞ whose probability density function (PDF) ψ r

i

depends, in general, on the system state n; we will
elaborate on its specific form below. The reaction event
that actually occurs is the one whose waiting time is
minimum. Thus, the waiting time between reaction events
is τr ¼ minðτrðiÞji ¼ 1;…; mrÞ. The joint distribution

ϕr
i ðt; nÞdt of reaction i happening and the reaction waiting

time being in ½t; tþ dt� is then given by [40]

ϕr
i ðt; nÞ ¼ ψ r

i ðt; nÞ
Y
l≠i

Z
∞

t
dtlψ r

lðtl; nÞ; ð2Þ

which states that ϕr
i ðt; nÞ is given by the probability that the

reaction times of the l ≠ i reactions are larger than the one
for reaction i, multiplied by the PDF of the waiting time of
reaction i, ψ r

i .
For the modeling of system fluctuations in terms of

waiting times, we distinguish between intrinsic and extrin-
sic noise. Extrinsic noise results from external fluctuations,
that is, variability in the physical or chemical environment.
Under transport-limited conditions, reaction delays arise
from mass transfer limitations due to reactants’ spatial
sampling efficiency and fluctuation-induced segregation
[17,23]. In the KMC spirit, these delays affect all particles
in the same way independently of the system state. This is
in contrast to intrinsic noise, which, by definition, repre-
sents the inherent stochasticity of the reaction process
proper [6,25,42]. Thus, we introduce a global delay time τg

such that, for a given state n, the interreaction time is
τ ¼ τrðnÞ þ τgðτrÞ. The global delay does not depend
directly on the state, but may depend on the current
reaction waiting time τr. As mentioned above, τg is a

manifestation of extrinsic noise, and the reaction waiting
times τr of intrinsic noise. The joint distribution for reaction
i to happen after an interreaction time in ½t; tþ dt� is
denoted by ϕiðt; nÞdt. We consider two global delay
scenarios. Scenario 1 assumes that τg is independent
of the reaction-specific waiting times and identically
distributed, with density ψg. In this case, we have
ϕiðt; nÞ ¼ ðϕr

i � ψgÞðt; nÞ, where � denotes convolution.
Scenario 2 considers τg to be given by a compound Poisson

process as τgðτrÞ ¼ PηðτrÞ
k¼1 ϑgk, where ηðuÞ is Poisson-

distributed with mean γu; the density of the identical
independently distributed ϑgk is denoted by ψg

0. The joint
distribution ϕiðt; nÞ can be expressed in Laplace space as
~ϕiðλ; nÞ ¼ ~ϕr

i ðλþ γ½1 − ~ψg
0ðλÞ�;nÞ [43,44]. Laplace trans-

formed quantities are denoted by a tilde, and the Laplace
variable is denoted by λ. Both scenarios represent global
delays of the full reaction system. In scenario 1, the delay is
synchronized with the reaction events themselves. The
delay time can be seen as a global “preparation” time for
the next reaction event. This means the delay time is
external, but the delay event is triggered by the reaction
event. In scenario 2, both delay time and occurrence of
delay events (characterized by the rate γ) are prescribed
externally. Such fixed-rate delay events can be related to
fluctuation-induced spatial segregation [45].
The CTRW dynamics for the stochastic process describ-

ing the random particle number vector Nk and time Tk after
k reaction steps can now be defined by the recursion
relations

Nkþ1 ¼ Nk þ srk ; Tkþ1 ¼ Tk þ τk; ð3Þ

where srk ¼ ðsrk1;…; srkms
Þ⊤ and the random number

rk ∈ ð1;…; mrÞ indicates the reaction that is occurring.
The joint distribution of ðrk; τkÞ is given by ϕiðt; nÞ. The
initial conditions are deterministic, N0 ¼ n0 and T0 ¼ 0.
The recursion relations (3) define an inhomogeneous
multidimensional CTRW because the joint distribution
of ðrk; τkÞ depends on the current system state Nk. We
use the CTRW formalism [46] to derive the following
generalized chemical master equation for the probability
Pðn; tÞ of finding the system in state n at time t [40]:

∂tPðn; tÞ ¼
X
i

Z
t

0

dt0
�Y

j

E
−sij
j − 1

�
Pðn; t0ÞMiðt − t0; nÞ;

ð4Þ

where the step operator Ez
j acts on a function fðnÞ by

incrementing the particle number nj of species Sj by the
integer z ∈ Z, i.e., Ez

jfðnÞ ¼ fðn1;…; nj þ z;…; nms
Þ [6].

The memory functions Mi are defined by their Laplace
transforms as [40]
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~Miðλ; nÞ ¼
λ ~ϕiðλ; nÞ

1 −
P

l
~ϕlðλ;nÞ

; ð5Þ

whose form is typical of the CTRW key formalism [46].
Note that (4) describes the full evolution of the nonlinear
dynamic system (3), in which the random increments depend
on the system state. The generalized chemical master
equation is inhomogeneous in that the memory function
depends explicitly on the state vector n. It generalizes the
chemical master equation [2,5]. A generalized Gillespie
algorithm corresponding to (4) is described in [40].
Chemical rate laws.—In order to characterize the impact

of stochastic delay on macroscopic reaction dynamics,
we focus on the corresponding rate laws. The dimension-
less concentrations are defined by C ¼ N=n0, with
n0 ¼

P
jnj;0. The macroscopic concentration is given by

the ensemble average hCi. We derive the following macro-
scopic equations [40]:

∂thCi ¼
X
i

si

Z
∞

0

dt0hMC
i ½t − t0;Cðt0Þ�i; ð6Þ

where we define MC
i ½t;CðtÞ� ¼ Mi½t; n0CðtÞ�=n0. Note that

these key equations are, in general, not closed. Nontrivial
scenarios for which closures of (6) are available, and
situations for which they are not, are discussed in the
following.
Reaction waiting times.—The waiting time associated

with reaction i events is given by the minimum intrinsic
reaction time, which is distributed according to a given
PDF pi. Thus, the state-dependent density of waiting times
for reaction i is [40]

ψ r
i ðt; nÞ ¼ hiðnÞpiðtÞ

�Z
∞

t
dt0piðt0Þ

�
hiðnÞ−1

; ð7Þ

where hiðnÞ ¼
Q

jnj!=½rij!ðnj − rijÞ!� accounts for all pos-
sible combinations of necessary reactants. Thus, we obtain
from (2), for the joint density of reaction i happening with
the reaction time t

ϕr
i ðt; nÞ ¼

hiðnÞpiðtÞR
∞
t dt0piðt0Þ

Ymr

l¼1

�Z
∞

t
dtlplðtlÞ

�
hlðnÞ

: ð8Þ

In the following, we briefly discuss the intrinsic reaction
waiting time statistics before we analyze, in detail, the
impact of reaction delay due to extrinsic noise.
Intrinsic reaction waiting times.—The intrinsic reaction

waiting times are a consequence of the intrinsic system
noise. In the proposed KMC framework, the intrinsic waiting
times are reset after a reaction event. Considering the
reaction process as a superposition of renewal processes
[47,48], this implies that the time to the next reaction after a
certain time has elapsed, that is, the forward recurrence time,

has the same distribution as the reaction time itself. This is a
property of the exponential distribution only. Thus, in the
following, we consider the intrinsic reaction waiting times
to be exponentially distributed. For piðtÞ ¼ κie−κit, with κi
the (microscopic) reaction rate, the joint distribution (8)
becomes ϕr

i ¼ hiκi expð−
P

lκlhltÞ. In the absence of
delay, that is, for ϕi ≡ ϕr

i , the memory function is obtained
by Laplace inversion of (5) as Mi ¼ hiκiδðtÞ, where δð·Þ is
theDirac delta. The generalized chemical master equation (4)
then becomes the well-known chemical master equation [5],
which describes Markovian dynamics. The kinetic rate laws
are obtained from (6) by approximating hiðnÞ ≈

Q
jn

rij
j =rij!

for large nj as

∂thCi ¼
X
i

siκCi
Y
j

hCjirij ; ð9Þ

where hCrij
j i ≈ hCjirij for large particle numbers because P

becomes strongly peaked about the ensemble average [6].
The (macroscopic) rate constants are given by κCi ¼
nαi−10 κi=

Q
jrij!, where αi ¼

P
jrij is the order of reaction

i. In the following, we focus on the analysis of non-
Markovian behaviors due to extrinsic noise as reflected in
scenarios 1 and 2.
Global delay: Scenario 1.—First, we consider a finite-

mean delay with hτgi ¼ μ. For λ ≪ μ−1, we may write
~ψg ≈ 1 − μλ. Thus, we obtain, together with the exponential
form of the ϕr

i given above, the following approximation
for the memory functions at t ≫ μ:

Miðt; nÞ ¼
κihiðnÞ

1þ μ
P

lκlhlðnÞ
δðtÞ: ð10Þ

The kinetic rate laws obtained from (9) describe general-
ized Michaelis–Menten kinetics

∂thCi ¼
X
i

si
κCi
Q

jhCjirij
1þ μC

P
kκ

C
k

Q
lhClirkl

; ð11Þ

where the macroscopic mean global delay μC ¼ n0μ.
Figure 1 illustrates the results discussed up to here for
irreversible second-order reactions S1 þ S2 → ∅ with
equal initial concentrations c0 for both species.
Global delay: Scenario 2.—The memory functions for

scenario 2 are given by ~Mi ¼ λhiκi=½λþ γð1 − ~ψg
0Þ�. We

consider a heavy tailed single-event delay PDF ψg
0 ∼ t−1−β,

such that ~ψg
0ðλÞ ≈ 1 − ðμλÞβ for λ ≪ μ−1. Here, μ is a

characteristic time scale and 0 < β < 1. Note that such a
delay is a parsimonious model for infinite-mean random
variables due to the generalized central limit theorem [49].
This leads to the approximate memory function ~Mi ¼
hiκiðtwλÞ1−β for t ≫ tw and t ≫ μ [40], where we defined
the effective delay time scale tw ¼ ðγμβÞ−1=ð1−βÞ. The
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resulting rate laws are time nonlocal and can be expressed
in terms of fractional-in-time evolution equations

∂thCi ¼
X
i

siκCi t
1−β
w ∂1−β

t

�Y
j

C
rij
j

�
: ð12Þ

Unlike for the case of finite mean delay, here, hQjC
rij
j i ≠Q

jhCjirij in the thermodynamic limit of infinite particle
numbers, expressing the impact of local nonequilibrium.
The ensemble average concentrations and their moments
can be obtained by subordination [49,50] from the sol-
utions of the corresponding well-mixed problem, which
satisfy (9) [40]. The behavior in single realizations of the
chemical system is different from the ensemble behavior
because large delay events with no change in concentration
dominate. In this sense, while the intrinsic reaction con-
ditions are the same in each realization, the global reaction
behaviors are different, and thus, particles in different
realizations are not statistically equivalent. The system is
weakly ergodicity breaking [34,35], which is a common
characteristic of anomalous transport in heterogeneous
environments.
To illustrate these findings, we consider annihilation

reactions of order α,
P

α
i¼1 Si → ∅, with equal initial

concentration c0 for all species. The long time limit of
Eq. (12) predicts the asymptotics hCα

i ðtÞi ∝ t−β. For α ¼ 1,
all concentration moments decay algebraically. The sur-
vival probability is dominated by the distribution of
reaction delays, and given by the probability that the
interreaction time is larger than t. The relative concen-
tration variance ðhC2

i i − hCii2Þ=hCii2 increases as tβ. For

α ¼ 2, a reaction event corresponds to the annihilation of a
pair, and this, in turn, is dictated by the delay times. This
means that pair survival is governed by the delay time
distribution. The mean concentration, on the other hand,
behaves asymptotically as hCii ∝ t−β lnðtÞ [40]. Thus, the
relative variance behaves as tβ= lnðtÞ2. This type of behav-
ior is characteristic of concentration fluctuations in random
media under anomalous transport [51,52]. Figure 2 shows
the evolution of the mean and mean squared concentrations
for α ¼ 1 and 2.
Conclusions.—We have proposed a CTRW approach for

chemical reactions under nonideal conditions which relaxes
the fundamental assumptions of classical KMC methods,
namely, those of exponential interreaction times and
statistical equivalence of all particles. The resulting chemi-
cal CTRW is inhomogeneous in that its evolution depends
on the system state. This is a direct consequence of the
dependence of the reaction waiting times on the particle
numbers intrinsic to KMC methods. The global delay
approach describes the impact of extrinsic noise on the
reaction dynamics. It may not be applicable directly to
situations in which the delay is reaction dependent because
the chemical CTRW (3) implies that the delay conditions
are reset after the reaction fires. The work of [28] provides
a framework for dealing with reaction-specific delays,
although it requires ad hoc identification of different orders
of reaction firing. In conclusion, the proposed chemical
CTRW provides an approach to account for the impact
of ambient fluctuations, which may open new ways of
understanding and modeling reaction phenomena under
nonideal conditions. It derives generalized Michaelis–
Menten kinetics as a result of finite-mean random delay,

FIG. 2. Moments of concentration for first order S1 → ∅ and
second order S1 þ S2 → ∅ annihilation reactions with infinite-
mean delay (scenario 2). The single-event delay exponent is
β ¼ 1=2, the effective delay time scale is tw ¼ 1, and the rate of
delay events is γ ¼ 102. Simulations are averaged over 105

realizations with 106 particles. Time is nondimensionalized by
tr ¼ 1=ðκCcα−10 Þ and concentration by c0. The inset illustrates the
breakdown of the hC2i ¼ hCi2 closure induced by weak ergo-
dicity breaking.

FIG. 1. Mean concentration for two concurrent second order
annihilation reactions S1 þ S2 → ∅ with exponential intrinsic
waiting times, without delay, and with finite-mean global delay
(scenario 1). The macroscopic reaction rates are κC1 ¼ 0.3 and
κC2 ¼ 0.7, and the macroscopic mean delay is μC ¼ 10. Simu-
lations (symbols) are single realizations with n0 ¼ 106. Time is
nondimensionalized by tr ¼ 1=½ðκC1 þ κC2 Þc0� and concentration
by c0.
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and time-nonlocal kinetic rate laws for heavy-tailed delay
time distributions.
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