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An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has
been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic
Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection.
Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect
the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-
dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals
characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order
wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott
insulators.
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In solid state materials, the combination of strong inter-
actions, quantum fluctuations, and finely tuned energy scales
gives rise to rich physics. For example, in a large class of
materials including transition metal oxides [1], organics [2]
and iridates [3], the presence of strong repulsion between
fermions leads to the formation of Mott insulating states.
Inducing charge fluctuations around these Mott insulators,
e.g., by doping, reveals intricate phase diagrams highlighting
the presence of multiple competing orders. Perhaps one of
the best known examples is the emergence of d-wave
superconductivity in high-temperature cuprates at the inter-
face between antiferromagnetic and Fermi liquid phases [4].
Complex states also arise near phase transitions when

competing insulating effects are present. In the neighborhood
of such transitions, where the strength of the insulating terms
is comparable, the effect of smaller terms, such as the kinetic
energy, leads to the emergence of metallic phases or exotic
correlations. For example, at the interface between the Mott
and band insulators, such a competition is believed to play an
important role in the ionic to neutral transitions in organic
charge-transfer solids [5,6] and at ferroelectric transitions
in perovskites [7]. The ionic Hubbard model, which gained
prominence over the last decade, was first developed to
explain the physics near these transitions. In this model, the
on-site Hubbard repulsion and staggered potential terms
induce insulating behavior when taken separately, but when
taken together they can compete and give rise to a region of
increased charge fluctuations. This region is of great interest
as this competition leads to the emergence of the bond order
wave phase signaled by a spontaneous dimerization of the
hopping.

The ionic Hubbard model is given by

Ĥ0 ¼ −J
XL−1
j¼1;σ

ðc†jσcjþ1σ þ H:c:Þ þU
XL
j¼1

nj↑nj↓

þ Δ
2

XL
j¼1;σ

ð−1Þjnjσ:

Here cð†Þj;σ are the fermionic annihilation (creation) operators
and nj;σ is the particle number operator on site j with spin
σ ¼ f↑;↓g. The amplitude J is the hopping matrix element,
U the repulsive on-site interaction strength, Δ an energy
offset between neighboring sites (leading to a staggered
potential), and L the number of sites. In one dimension, this
model has been the subject of many studies using a variety of
techniques including bozonization, density renormalization
group, exact diagonalization, and quantum Monte Carlo
methods [8–19]. A smaller number of studies have also
focused on the excitations of the ionic Hubbard model [20–
24]. Despite initial controversy, theoretical investigations
point to the existence, at half filling, of a bond order wave
phase occuring around U ∼ Δ, characterized by the sponta-
neous dimerization of the hopping, i.e., the order parameter
B ¼ jhB̂ij, where B̂ ¼ P

L−1
j¼1;σð−1Þjðc†jσcjþ1σ þ H:c:Þ. The

bond order wave spontaneously breaks site-inversion sym-
metry, and, in the limit of infinite system size, the state is
twofold degenerate with restored bond-inversion symmetry
on either even or odd bonds. The bond order wave phase
possesses finite charge and spin gaps and is separated, on the
one side, from a band insulating state by an Ising quantum
phase transition and, on the other side, from a Mott insulator
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by a Kosterlitz-Thouless (KT) transition [Fig. 1(a)]. Despite
strong theoretical evidence, the bond order wave has yet to
be experimentally detected.
Ultracold fermionic gases provide an appealing novel

avenue to detect this state. The ionic Hubbard model was
recently realized using fermions loaded into an optical
superlattice potential [25,26]. Furthermore, over the last
decade, powerful detection techniques were developed to
probe the intricate physics of quantum gases. For instance,
characteristic excitations of correlated systems can be probed
using various spectroscopic techniques such as radio fre-
quency, Raman, Bragg, and lattice modulation spectroscopy
[26–43].
However, detecting the bond order wave and character-

izing the nature of the neighboring phase transitions
remains to be done. One important challenge is to identify
a suitable observable to detect the bond order wave.
Directly measuring the order parameter is difficult as this
would require a measurement of the staggered kinetic
energy. Alternatively, a promising approach to characterize

the neighboring phase transitions is to study the response of
the system to a perturbation. This requires the development
of a techniquewhich, in contrast to available probes, couples
directly to the order parameter. We demonstrate here, using
time-dependent matrix renormalization group (t-DMRG)
[44–46] and bosonization techniques [47–49], that super-
lattice amplitude modulation spectroscopy reveals features
of both the Ising and KT transitions in one-dimensional
systems signaling the presence of the bond orderwave phase.
This modulation also provides insights into the excitation
spectra of both the band and Mott insulators, the two phases
bordering the bond order wave. On the band insulating
side, near the Ising transition, one can follow the closing of
the charge excitation gap. On the bond order side of the KT
transition, one can study the closing of the spin gap which
then remains closed in the Mott insulator. The proposed
detection method relies on inducing a small time-periodic
modulation of the superlattice potential described by the
perturbation Ĥpert ¼ A sinðωtÞB̂, with A the strength and ω
the frequency of the modulation directly coupling to the

(a)

(b)

(c) (d) (e)

FIG. 1. (a) Phase diagram of the 1D ionic Hubbard model as a function ofU for fixedΔ and J.Δc and Δs are the charge and spin gaps.
(b) The bond order parameter jhB̂ij at fixed Δ ¼ 50J for different system sizes calculated from DMRG keeping up to 400 states. The
dashed vertical lines mark the position of the maximum of the derivative located at Uc1 ∼ 51.2J, 51.26J, 51.28J, 51.3J for system sizes
L ¼ 64, 96, 128, 192, respectively. (c)–(e) Energy absorption rate for different regions of the phase diagram at fixed Δ ¼ 50J: (c) Deep
in the band insulator for U ¼ 10J, A ¼ 0.001J, dashed vertical lines mark the width of the band of excitations; (d) At the Ising critical
point for different system sizes and amplitudes A ¼ 0.001J (filled symbols) and A ¼ 0.0005J (open symbols). The Gaussian fits (solid
and dashed lines) are guides to the eye, where the maxima are fixed to λðℏω=JÞ−3=4 with λ chosen to agree with the L ¼ 128 peaks; (e) In
the bond order wave phase near the KT transition for L ¼ 64, U ¼ 52J, and A ¼ 0.005J. Vertical dashed lines indicate multiples of the
spin gap.
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order parameter. By contrast with standard lattice amplitude
modulation, here the lattice is modulated in a dimerized
fashion. Experimentally, such a perturbation is achievable by
time-periodically tuning the phase between the two laser
waves generating the optical superlattice. The parameters can
be chosen such that the phase modulation translates into an
alternating modulation of the lattice height while the bottom
offsets stay approximately constant which is equivalent to a
dimerizedmodulation of the hopping amplitude. The number
of excitations created through the modulation is then
assessed by monitoring the absorbed energy.
Using t-DMRG, we determine the evolution of the full

system Ĥ0 þ Ĥpert, with open boundary conditions, and
compute the energy of the system as a function of time.
Typically, the energy shows a quadratic rise at initial times
before entering a linear regime and then saturates at later
times. We extract the slope of the linear energy increase, a
quantity we identify as the energy absorption rate [50]. For
the time evolution using t-DMRG we typically keep 120
states (except at the Ising critical point where we keep 160).
The error analysis is performed by increasing the matrix
dimension to 160 states (and 240 at the Ising critical point).
The time step of the Trotter-Suzuki time evolution is set to
JΔt ¼ 0.001ℏ and we use JΔt ¼ 0.0005ℏ to conduct the
error analysis. The error bars provided in the figures represent
the maximal uncertainties due to the matrix dimension, the
time step, and the fit error (as the fit range has been varied).
In the limit of sufficiently weak modulation strength,

where linear response theory applies, the energy absorption
rate is related to the dynamic susceptibility as dE=dt∼
ωA2ImχB̂B̂†ðωÞ. Here the dynamic susceptibility χB̂B̂†ðωÞ
is determined by the Fourier transform of the retarded
correlation function χB̂B̂†ðtÞ¼−iθðtÞh½B̂ðtÞ; B̂†ð0Þ�i0, where
h·i0 denotes the expectation value in the ground state.
We first consider the energy absorption rate at the Ising

critical point Uc1. Within bosonization, B̂ is proportional to
the Ising order parameter in the vicinity of the Ising
transition [8,9]. At the Ising quantum critical point, the
scaling dimension of the order parameter is 1=8. Estimating
its dynamic susceptibility at criticality by a scaling argu-
ment, we find the absorbed power to diverge asLω−3=4 in the
thermodynamic limit as themodulation frequency decreases
to zero signaling the Ising transition. At frequencies lower
than the spin gap, the charge fluctuations dominate causing
the divergence. One should note that normal lattice modu-
lation fails to detect the existence of the Ising phase
transition. In this case, the energy absorption rate does
not present a divergence at the Ising transition as this latter
modulation scheme does not couple to the bond order wave.
The form of the divergence is affected by the system size.

In a finite system, we find [50]

ImχB̂B̂†ðωÞ ∼ L
7
4

X∞
n¼0

�
Γðnþ 1=8Þ
Γðnþ 1Þ

�
2

δ½ℏ(ω − ΩðnÞ)�;

with ℏΩðnÞ ¼ 4π ℏuc
aL ðnþ 1

16
Þ, where a is the lattice spacing

and uc the sound velocity of the low energy charge
excitations. Thus, for a finite system, the divergence will
be signaled by the presence of a series of peaks occuring at
ℏΩðnÞ with spectral weight scaling as ω−3=4.
In order to test these low energy predictions, we time

evolve systems of different sizes at the Ising critical point
for a range of modulation frequencies and extract the
energy absorption rates. At low energies (ℏω=J < 0.15),
both our numerical results and our predictions from
bosonization are in good agreement: the peaks height
follows well the ðℏω=JÞ−3=4 divergence. To identify values
of U=J near the Ising critical point ðU=JÞc1, we find for
each system size the location of the maximum of the
derivative of the order parameter, ∂jhB̂ij=∂U [Fig. 1(b)].
Analyzing the energy absorption rate at these values, we
then identify the n ¼ 1 peak [64]. We estimate the peak
position by fitting to the t-DMRG data, for the system of
size L ¼ 128 and modulation amplitude A ¼ 0.0005J, a
Gaussian approximating the δ function with a finite broad-
ening. We find ℏωpeak=J ≈ 0.098� 0.005. From this we
extract the sound velocity of excitations ðℏuc=aJÞ≈
0.94� 0.05, a typical value for lattice systems [65].
The agreement between the peaks predicted from boso-

nization using this value of uc [indicated in Fig. 1(d) by
shaded regions] and the t-DMRG ones is good. We attribute
the disagreement in the peak position and height for L ¼ 64

to the breakdown of bosonization in the energy range where
the corresponding n ¼ 1 peak appears. While the asym-
metry of the n ¼ 1 peak at L ¼ 192 and A ¼ 0.001J is due
to saturation effects in the numerics. Slightly above and
slightly below Ising criticality the charge gap reopens [50].
The approach to the Ising phase transition is also

detected from the signal obtained on the band insulating
side as one can follow the linear closing of the charge gap
as the system approaches the critical point. Deep within the
band insulator, shown in Fig. 1(c), the absorption peak is
located approximately at ℏω ∼ ðΔ −UÞ, corresponding to
the naive expectation of breaking a doublon on a low
energy site and of transferring one particle to the neighbor-
ing high energy site. The peak is very sharp and its width
scales approximately as J2=ðΔ −UÞ as the excitation can
travel through the lattice via virtual processes. A strong rise
occurs at its left boundary corresponding to a divergence at
the lower excitation band edge as also seen in the non-
interacting model. The location, width, and shape of the
peak deep in the band insulator [see solid line in Fig. 1(c)]
is understood within an effective model using a Schrieffer-
Wolff transformation for the excited states [66]. When
approaching the Ising transition by increasing U, the peak
broadens and shifts towards smaller energies. The position
of the peak maximum as a function of U is shown in Fig. 2,
thus confirming that the charge gap closes when approach-
ing the Ising phase transition.
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By comparison to the Ising transition, the location of the
KT quantum critical point is harder to pinpoint in finite size
systems as the bond order wave order parameter falls off
very slowly; see Fig. 1(b). Nevertheless, to the left of the
KT transition on the bond order wave side, bosonization
predicts a gapped response followed by a sharp increase of
the energy absorption rate at twice the minimum energy
(mass) of a soliton, μ, corresponding to the creation of a
soliton-antisoliton pair [50],

ImχB̂B̂†ðωÞ ∼ 1

J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ℏω
2μ

�
2

− 1

s
:

In the spontaneous dimerized phase, singlets form either on
even or odd bonds, giving rise to a doubly degenerate
ground state and solitons are interpreted as domain walls
between the two ground states. The operator B̂ is SU(2)
invariant, and can only induce transitions from the singlet
ground state to excited states within the same spin sector.
The lowest available state is a pair of domain walls
(solitons) of opposite spins giving a threshold at twice
the soliton mass [67].
We test this prediction near this second phase boundary at

U ¼ 52J.As shown inFig. 1(e),weobserve sharp rises of the
absorption rate at multiples of the spin gap value. The spin
gap is obtained from static DMRG calculations in different
Sz¼N↑−N↓ sectors,Δs¼E0ðN¼N↑þN↓ ¼L;Sz¼ 2Þ−
E0ðN¼N↑þN↓ ¼L;Sz¼ 0Þ. For U ¼ 52J we find Δs ≈
0.049J forL ¼ 64 converged in thematrix dimension. Note,
that the normal lattice modulation does not couple to the
soliton-antisoliton excitation. Approaching theKT transition
from the bond order wave side, the soliton mass becomes
smaller and smaller until at the transition the gap closes and a
lowenergy feature, associatedwith spin excitations, arises on
the Mott-insulating side. Hence, superlattice modulation
succeeds in signaling the proximity of the KT quantum
critical point. In the Mott insulating phase, the averaged
energy absorption rate is predicted by bosonization to be
constant at low modulation frequencies in the infinite size
limit. In fact, in a finite systemwe expect equal weight peaks,

which blend into a constant spectrum when L → ∞. This
spectrum, whose amplitude decreases with increasing U, is
bounded by the low energy cutoff. Our numerical results for
the case of the Mott insulator show at low energies a broad
excitation spectrum [see Fig. 3(b)]. We also find that the
width and height of the spectrum decreasewith increasingU.
These different features corroborate the predictions from
bosonization. Additionally, due to the dominant role played
by the spin degrees of freedom, for J ≪ U − Δ, the ionic
Hubbard model can be mapped at low energies onto an
isotropic Heisenberg chain with exchange interaction JXY ¼
JZ ¼ ð4J2=UÞ½1=(1 − ðΔ=UÞ2)� [6]. As seen in Fig. 3, the
width of the spectrum increases linearly with the strength
of the Heisenberg exchange interaction confirming the spin
nature of this excitation spectrum. Substructures in the
spectrum might arise at longer time scales as revealed in
[31] for the homogeneous Hubbard model.
In summary, we demonstrated that superlattice modula-

tion spectroscopy can be used to detect features of both the
Ising and KT transitions signaling the presence of the bond
order wave phase. This approach would provide a first
experimental glimpse into a phase that has evaded detection
in the solid state context and highlights the versatility of
spectroscopic methods.
To facilitate the detection of these various features, care

should be taken to choose experimental parameters forwhich
the bond order wave is robust and has a finite (preferably
large) extension, a feature increasingwith the energy offsetΔ
[16]. While the band insulator and bond order wave are both
robust due to their gapped spectrum, at Ising criticality and in
the Mott insulator, the gap closes. Therefore, conducting the
experiment at a temperature below∼J2=ðΔþUÞ, the lowest
energy scale for charge and spin fluctuations, is desirable.
This is a similar scale as for the antiferromagnetic phase, a
situation where relevant correlations were recently exper-
imentally observed [68–70]. The band insulator and the bond
order wave state are also robust to a weak trapping potential;
however, at the Ising critical point a homogeneous potential
[71–73] would be advantageous to unambigiously identify
the critical scaling behavior.

FIG. 2. The position of the maximum of the absorption peak
ℏωpeak corresponds approximately to the charge gap on the band-
insulating side (Δ > U) at fixed Δ ¼ 50J and L ¼ 64. Inset:
close to the transition the deviation from the naive expectation
Δ − U (dashed line) increases.

(a) (b)

FIG. 3. (a) Width of the low energy band of spin excitations in
the Mott insulator, extracted from the energy absorption rate, as a
function of the effective spin coupling JXY for Δ < U at fixed
Δ ¼ 50J and L ¼ 64, A ¼ 0.005J. The dashed line is a linear fit
to the data. (b) Energy absorption rate as a function of ℏω
(Δ ¼ 50J, L ¼ 64, A ¼ 0.005J).
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