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The superposition principle lies at the heart of many nonclassical properties of quantum mechanics.
Motivated by this, we introduce a rigorous resource theory framework for the quantification of superposition
of a finite number of linear independent states. This theory is a generalization of resource theories of
coherence. We determine the general structure of operations which do not create superposition, find a
fundamental connection to unambiguous state discrimination, and propose several quantitative superposition
measures. Using this theory, we show that trace decreasing operations can be completed for freewhich, when
specialized to the theory of coherence, resolves an outstanding open question and is used to address the free
probabilistic transformation between pure states. Finally, we prove that linearly independent superposition is
a necessary and sufficient condition for the faithful creation of entanglement in discrete settings, establishing
a strong structural connection between our theory of superposition and entanglement theory.
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Introduction.—During the last decades, there has been
an increasing interest in quantum technologies. The main
reason for this is the operational advantages of protocols or
devices working in the quantum regime over those relying
on classical physics. Early examples include entanglement-
based quantum cryptography [1], quantum dense coding
[2], and quantum teleportation [3], where entanglement is a
resource which is consumed and manipulated. Therefore
the detection, manipulation, and quantification of entan-
glement was investigated, leading to the resource theory
of entanglement [4]. Typical quantum resource theories
(QRTs) are built by imposing an additional restriction to
the laws of quantum mechanics [5–7]. In the case of
entanglement theory, this is the restriction to local oper-
ations and classical communication (LOCC). From such a
restriction, the two main ingredients of QRTs emerge: The
free operations and the free states (which are LOCC and
separable states in the case of entanglement theory). All
states which are not free contain the resource under
investigation and are considered costly. Therefore, free
operations must transform free states to free states, allowing
for the resource to be manipulated but not freely created.
Once these main ingredients are defined, a resource theory
investigates the manipulation, detection, quantification, and
usage of the resource.
In principle, not only entanglement but every property of

quantum mechanics not present in classical physics could
lead to an operational advantage [8,9]. This motivates the
considerable interest in the rigorous quantification of non-
classicality [10–15]. The superposition principle underlies
many nonclassical properties of quantum mechanics includ-
ing entanglement or coherence. Recently, resource theories
of coherence [11,16,17] and their role in fields as diverse as
quantum computation [8,18,19], quantum phase discrimi-
nation [20], and quantum thermodynamics [21] attracted
considerable attention. In these settings, the free states form a

finite orthonormal basis of the system under consideration
and the resource is the superposition of these, called
coherence. Here we present a generalization of coherence
theories and relax the requirement of orthogonality of the free
states to linear independence. To be precise, we construct a
resource theory in which the pure free states are a finite
linearly independent set and their nontrivial superpositions
are resource states. Mixed states are free if and only if they
can be represented as statistical mixtures of free pure states.
Thus our framework contains coherence theory as a special
case. For obvious reasons, we call the free states super-
position-free and the resource states superposition states.
Such a generalization of coherence theory is interesting

for several reasons. Linear independence relaxes the
convenient but restrictive requirement of orthogonality,
yet still provides a fundamental framework in which the
notion of superposition is unambiguous and self-consistent.
From a conceptual point of view, our theory helps to clarify
the role of orthogonality versus linear independence. We
show that many of the results of coherence theory are just
special cases of their counterparts in our nonorthogonal
setting. This indicates that linearly independent super-
position, rather than the stronger requirement of orthogon-
ality, is a major underlying factor in such quantum resource
theories. In addition, superposition states can be faithfully
converted into entanglement, which implies a fundamental
connection between entanglement and single-system non-
classicality [12,13]. Thus, our resource theory can give new
insights into the resource theory of entanglement and, vice
versa, the faithful mapping between these theories allows
for an investigation of the controversial notion of non-
classicality based on the well-founded principles of entan-
glement [22]. As an application, the theory presented here
can quantify the nonclassicality in the superposition of a
finite number of optical coherent states. This is not possible
using the framework of coherence theory, since the optical
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coherent states are not orthogonal. Our theory can thus be
seen as a starting point for more general resource theories
with less restrictive, yet still physically meaningful con-
straints on the free states. Mastering these further gener-
alizations will allow us to quantify optical and other forms
of nonclassicality rigorously and to unify their description
with entanglement theory (see also Refs. [6,14,23]).
This Letter is structured as follows. In the next section, we

define our free states and operations formally. Tovalidate the
choice of linear independent free states, we prove that linear
independence is a necessary and sufficient ingredient for the
faithful creation of entanglement, completing earlier results
from Ref. [12]. Then we characterize the free operations
using the concept of reciprocal states known from unam-
biguous state discrimination [24,25]. This leads to a proof
that any trace-decreasing operation can be completed for
free to a trace-preserving operation in the theory of super-
position and hence in the special case of coherence theory.
We proceed to address the quantification of superposition
and propose several measures. For free transformations
between pure states we show that generically the maximal
probability of success is the solution of a semidefinite
program. Finally, we investigate states with maximal super-
position and the operational advantages they allow for,
before concluding with a discussion on future research
directions. Proofs and some additional results are given in
the Supplemental Material [26], including a game in which
access to superposition turns certain loss into certain win.
Basic framework.—In this section, we give the formal

definition of the free states and operations that we consider.
Definition 1.—Let fjciigdi¼1 be a normalized, linear inde-
pendent and not necessarily orthogonal basis of the Hilbert
space represented by Cd, d ∈ N. Those basis states are
called pure superposition-free states. All density operators
ρ of the form

ρ ¼
Xd
i¼1

ρijciihcij; ð1Þ

where the ρi form a probability distribution, are called
superposition-free. The set of superposition-free density
operators is denoted byF and forms the set of free states. All
density operators which are not superposition-free are called
superposition states and form the set of resource states.
For d ¼ 1, the concept of superposition is empty; thus,

all the following results assume d ≥ 2. In Refs. [12,15],
the classical rank of a state has been introduced as the
minimum number of free states we need to superpose in
order to represent the state. We will say that an isometry Λ
is a faithful conversion operation (to and from entangle-
ment) when the Schmidt rank of Λjψi is equal to the
classical rank of jψi. The relevance of linear independence
for our resource theory is based on the following theorem.
Theorem 2.—If the free states in a finite dimensional

Hilbert space form a countable set, then linear independence
of the free states is a necessary and sufficient condition for the
existence of a faithful conversion operation. In case the free

states are a finite set of optical coherent states, the faithful
conversion can be implemented by a beam splitter [14].
Sufficiency is proved in an earlier theorem from Ref. [12]

(and extended in Ref. [13]). In the Supplemental Material
[26], we prove the converse result, thus completing the
original theorem. Definition 3.—A Kraus operator Kn is
called superposition-free if KnρK

†
n ∈ F for all ρ ∈ F .

Quantum operations ΦðρÞ are called superposition-free if
they are trace preserving and can be written as

ΦðρÞ ¼
X
n

KnρK
†
n; ð2Þ

where all Kn are free. The set of superposition-free oper-
ations forms the free operations and is denoted by FO.
At this point, let us highlight that the definition of the

free operations is not unique. This is a common trait of
QRTs. The biggest possible class of free operations for
our choice of the free states is given by those quantum
operations that map the free states onto themselves which
are denoted by MFO (maximally superposition-free
operations). However, in general, these operations do not
possess a representation in terms of superposition-free
Kraus operators.
Proposition 4.—MFO is strictly larger than FO. This

is also valid in the special case of coherence theory.
Hence, someonewhohas access tomeasurement outcomes

of an element ofMFO and can thus do postselection could
conclude that a superposition-free operation generated super-
position from a superposition-free state. Our definition of
the free operations guarantees that one cannot create resour-
ces for free by obtaining measurement results. On the other
hand, it is not as restricted as other definitions demanding,
for example, a free dilation [34,35]. For a discussion of
alternative choices, see the Supplemental Material [26].
Free operations.—In order to describe the general

structure of FO, we need to introduce some notation.
Since the pure superposition-free states form a basis of Cd,
d ∈ N, there exist vectors jc⊥i i; i ¼ 1;…; d such that

hc⊥i jcji ¼ δi;j; ð3Þ
which are not normalized but form a basis as well. In
the context of unambiguous state discrimination, the states
one gets by normalizing jc⊥i i are called reciprocal states
[24,25]. For explicit calculations, it is convenient to
express both fjciigdi¼1 and fjc⊥i igdi¼1 with respect to an
orthonormal basis fjiigdi¼1 which will be called computa-
tional. Now we can introduce two linear operators V andW
such that Vjii ¼ jcii and Wjii ¼ jc⊥i i. Notice that both V
and W are full rank since they correspond to basis trans-
formations. From Eq. (3), it follows that δi;j ¼ hc⊥i jcji ¼
hijW†Vjji and thusW ¼ ðV†Þ−1. With this notation at hand,
the explicit form of a superposition-free Kraus operator
can be given, which is done in the following theorem.
Theorem 5.—A Kraus operator Kn is superposition-free

if and only if it is of the form
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Kn ¼
X
k

ck;njcfnðkÞihc⊥k j; ð4Þ

where the ck;n ∈ C and the fnðkÞ are index functions.
Incoherent Kraus operators ~Kn as defined in the limit

of coherence theory [16] are thus given by ~Kn ¼P
kck;njfnðkÞihkj [36,37]. If we choose the incoherent

states fjkig as the computational basis, the operator
Kn ¼ V ~KnV−1 has the form of a superposition-free
Kraus operator. In order to have a valid trace nonincreasing
quantum operation, we need

1 ≥
X
n

K†
nKn ¼

X
n

ðV†Þ−1 ~K†
nV†V ~KnV−1: ð5Þ

If the pure superposition-free states are not orthogonal,
V† ≠ V−1 and, in general, it is therefore not possible to
transform a trace nonincreasing set of incoherent Kraus
operators by a basis transformation V into a superposition-
free one.
Intuitively, the introduction of additional systems in free

states is for free. With the above theorem at hand, we can
show that this is indeed the case.
Proposition 6.—If both σB and all Kn are free, the

quantum operation ΦðρAÞ ¼ trB
P

nKnρA ⊗ σBK
†
n is free.

When dealing with trace decreasing operations that can be
decomposed into superposition-free Kraus operators, the
question arises whether they are part of a (trace preserving)
superposition-free operation. If this was not the case, it would
imply that one cannot call the trace decreasing operation free
because one disregards a part that can only be done in a
nonfree way [38]. This leads us to our first main result.
Theorem 7.—Assume we have an (incomplete) set of

Kraus operators fKmg such that
P

mK
†
mKm ≤ 1. Then

there always exist superposition-free Kraus operators
fFng with

P
mK

†
mKm þP

nF
†
nFn ¼ 1.

From here on we will call trace-decreasing operations
with a decomposition into superposition-free Kraus oper-
ators superposition free as well, since we can always
complete them for free. Note that this is also valid in
the special case of coherence theory.
Superposition measures.—In this section, we address

the quantification of superposition, extending the method
used in Ref. [16] to quantify coherence. Definition 8.—A
functionM mapping all quantum states to the non-negative
real numbers is called a superposition measure if it is
(S1) Faithful: MðρÞ ¼ 0 if and only if ρ ∈ F .
(S2a) Monotonic under FO: MðρÞ ≥ M½ΦðρÞ� for

all Φ ∈ FO.
(S2b) Monotonic under superposition-free selective

measurements on average: MðρÞ ≥ P
npnMðρnÞ: pn ¼

trðKnρK
†
nÞ, ρn ¼ ðKnρK

†
nÞ=pn for all fKng:

P
nK

†
nKn ¼

1, KnFK†
n ⊂ F .

(S3) Convex:
P

npnMðσnÞ ≥ MðPnpnσnÞ for all fσng,
pn ≥ 0,

P
npn ¼ 1.

If only condition ðS1Þ and ðS2aÞ or ðS2bÞ are satisfied,
we call M a superposition monotone.

Property ðS1Þ demands that a state has zero superposition
if and only if the state is superposition-free. As stated in
ðS2aÞ, the application of a superposition-free operation to
a state should not increase its superposition. If one does
superposition-free selective measurements, one does not
expect the superposition to increase on average which is
exactly the point of ðS2bÞ. The convexity condition ðS3Þ
enforces that mixing states cannot increase the average
superposition. It can be shown easily that ðS2aÞ follows
from ðS2bÞ and ðS3Þ. As in coherence theory [16], some
distance measures D can be used to define superposition
measures and monotones. We define a candidate MD by

MDðρÞ ¼ min
σ∈F

Dðρ; σÞ: ð6Þ
If D is a metric, MD fulfills ðS1Þ. If it is furthermore
contractive under completely positive and trace preserving
(CPTP) maps, it fulfills ðS2aÞ [16,40] and for D being
jointly convex [41], the inducedMD fulfills condition ðS3Þ.
In accordance with Refs. [12,15,36], we define the

superposition rank rSðjψiÞ for a state jψi ¼ P
jψ jjcji as

the number of ψ i ≠ 0. Assume a state jφi ¼ P
jφjjcji can

be transformed (with some probability p > 0) to a
state jξi ¼ P

jξjjcji by FO. According to Theorems 5
and 7, this is possible if and only if there exists a
superposition-free Kraus operator K ¼ P

icijcfðiÞihc⊥i j
with the properties

ffiffiffiffi
p

p X
i

ξijcii ¼
ffiffiffiffi
p

p jξi ¼ Kjφi ¼
X
i

φicijcfðiÞi; ð7Þ

and K†K ≤ 1. Hence the number of ξi ≠ 0 is at most as
large as the number of φi ≠ 0. This proves that the
superposition rank cannot increase under the action of a
superposition-free Kraus operator. With the definition of
the superposition rank at hand, we present some explicit
superposition measures.
Proposition 9.—The following functions are superposi-

tion measures as defined in Definition 8.
(1) The relative entropy of superposition

Mrel:entðρÞ ¼ min
σ∈F

SðρjjσÞ; ð8Þ

where SðρjjσÞ ¼ tr½ρ log ρ� − tr½ρ log σ� denotes the quan-
tum relative entropy. See Ref. [16] for the case of coherence
theory.
(2) The l1 measure of superposition

Ml1ðρÞ ¼
X
i≠j

jρijj; ð9Þ

for ρ ¼ P
ijρijjciihcjj. See again, Ref. [16] for the case of

coherence theory.
(3) The rank-measure of superposition

MrankðjψiÞ ¼ log½rSðjψiÞ�;
MrankðρÞ ¼ min

ρ¼
P
i

λijψ iihψ ij

X
i

λiMrankðjψ iiÞ: ð10Þ
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(4) The robustness of superposition

MRðρÞ ¼ min
τ density matrix

�
s ≥ 0∶

ρþ sτ
1þ s

∈ F
�
: ð11Þ

This quantity has an operational interpretation in the limit
of coherence theory: the robustness of coherence quantifies
the advantage enabled by a quantum state in a phase
discrimination task [20].
State transformations and resources.—In resource the-

ories, it is an important question to which other states a
given state can be transformed under the free operations
because this leads to a hierarchy of “usefulness” in
protocols. Here we consider the transformation between
single copies of pure states. Let us first clarify when
probabilistic conversions are possible at all. As already
mentioned, there is no possibility to increase the super-
position rank of a pure state by applying a superposition-
free Kraus operator. On the other hand, if two states jψi ¼P

j∈Rψ jjcji and jφi ¼ P
j∈Sφjjcji have the same super-

position rank r ¼ jSj ¼ jRj, then there exists a super-
position-free transformation that transforms one to the
other with probability larger than zero. To see this, interpret
R and S as (arbitrarily) ordered indexing sets. Define a
function f that maps the nth element of R to the nth element
of S and a superposition-free Kraus operator

K ¼ ffiffiffiffi
p

p X
j∈R

φfðjÞ
ψ j

jcfðjÞihc⊥j j: ð12Þ

Hence, Kjψi ¼ ffiffiffiffi
p

p jφi and since ψ j ≠ 0 for all j ∈ R and
the pure superposition-free states fjcjig are linear indepen-
dent,p can always be chosen such thatp > 0 andK†K ≤ 1.
With the help of theorem 7, this proves that there exists a
probabilistic superposition-free transformation. Different
orderings of S leads to r! different functions fn, and thus
Kraus operators Kn. For convenience, we define

Fn ¼
X
j

φfnðjÞ
ψ j

jcfnðjÞihc⊥j j; ð13Þ

with Fnjψi ¼ jϕi andKn ¼ ffiffiffiffiffiffi
pn

p
Fn. This allows us to state

our second main result: The optimum free conversion
probability between two pure states of the same super-
position rank is the solution of the semidefinite program

maximize
X
n

pn

subject to
X
n

pnF
†
nFn ≤ 1; pn ≥ 0 for all n; ð14Þ

which can be solved efficiently using numerical algorithms
[42,43]. Doing so, our investigations indicate that deter-
ministic superposition-free transformations are rare in the
case of nonorthogonal bases. Already for qubits, the
probability for the existence of a deterministic transforma-
tion between two randomly picked states seems to be zero.

For qubits, this is investigated analytically for a specific
initial state in the SupplementalMaterial [26]. If we consider
superposition-free transformations to a target state with
lower superposition rank than the initial state, a probabilistic
transformation is still possible by the same arguments. The
optimization problem, however, is more troublesome since
we have to include Kraus operators where different pure
superposition-free states are mapped to the same super-
position-free target state. Therefore, the optimization prob-
lem is no longer semidefinite.
If a d-dimensional superposition state can be used to

generate all other d-dimensional states deterministically
by means of FO, it can be used for all applications. These
states are said to have maximal superposition. This defi-
nition is independent of a specific superposition measure
and can serve to normalize measures. Such golden units
exist in coherence theory for all dimensions [16], but only
for qubits in our case.
Proposition 10.—For qubit systems with hc1jc2i ≠ 0,

there exists a single state with maximal superposition.
For higher dimensions, there exists no state with maximal
superposition in general.
This is different to coherence theory where in dimension

d, all states of the form jmdi ¼ 1=
ffiffiffi
d

p P
d
n¼1 expðiϕnÞjni,

ðϕn ∈ RÞ are maximally coherent [16]. A reason for this
seems to be that in our more general setting, one loses entire
classes of deterministic free transformations, for example,
diagonal unitaries which change the phases ϕn.
On the other hand, as in coherence theory [16], the

consumption of a qubit state with maximal superposition
allows us to implement any unitary qubit gate by means
of FO.
Theorem 11.—Any unitary operationU on a qubit can be

implemented by means of FO and the consumption of an
additional qubit state with maximal superposition jm2i
provided both qubits possess the same superposition-
free basis. This means that for every U there exists a fixed
Ψ ∈ FO independent of ρs acting on two qubits such that

Ψðρs ⊗ jm2ihm2jÞ ¼ ðUρsU†Þ ⊗ ρh; ð15Þ

where ρh is a superposition-free qubit state.
This means that consuming enough qubits with maximal

superposition, one can perform any unitary and thus any
operation [44].
Conclusions.—We introduced a resource theory of

superposition, which is a generalization of coherence
theory [16] and we showed that in a noncontinuous setting,
this is the only generalization that allows for a faithful
conversion to entanglement. Using the tools of quantum
resource theories, we defined superposition-free states and
operations. This allowed us to prove that several measures
are good quantifiers of superposition, in particular, the
relative entropy of superposition and the easy to compute l1
measure of superposition. We also uncovered an important
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partial order structure for pure superposition states: a state
can be probabilistically converted to another target state via
superposition-free operations only when the target has an
equal or lower superposition rank. The maximal probability
for successful transformations between states of the same
superposition rank is the solution of a semidefinite pro-
gram. Contrasting with coherence theory, we find that only
in two dimensions is there a state with maximal super-
position content which can be consumed to implement an
arbitrary unitary using only free operations.
Our results can help to investigate phenomena such as

catalytic transformations [46–50], and act as a starting point
for the investigation of mixed state transformations, trans-
formations in the asymptotic limit [36] or approximate
transformations [51]. Akin to developments in coherence
theory, we can also incorporate further physical restrictions
[11] such as conservation of energy [52], or restrictions
for distributed scenarios such as local superposition-free
operations and classical communication [53–56]. As in
coherence theory [36,54], there are also connections to
entanglement theory [12,13] to be further understood. As
potential next steps, our results could be extended to
infinite dimensional states, continuous settings, or linearly
dependent free states (like those found in magic state
quantum computation [57,58]). This leads towards the
ultimate goal of a fully general theory of nonclassicality
which puts superposition, coherence, entanglement, and
quantum optical coherence on a unified standing.
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project QUCHIP, and an Alexander von Humboldt
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