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Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a
U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as
gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field
remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid
of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a
fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase
transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid
similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97,
147202 (2006)]. Possible relevance to experiments is discussed.
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There exists a prototype of magnetic rare-earth pyro-
chlores [1] that involves a strong geometrical frustration of
interactions among effective pseudospin-1=2 moments
located at the vertices of a corner-sharing network of
tetrahedra [Fig. 1(a)]. For instance, many low-temperature
magnetic and thermodynamic properties of Dy2Ti2O7 and
Ho2Ti2O7 [2–5] are practically described by the nearest-
neighbor antiferromagnetic Ising model,

Hcl ¼ J
X

hr;r0i
SzrS

z
r0 ; J > 0; ð1Þ

where Sr ¼ ðSxr ; Syr ; SzrÞ represents a pseudospin-12 operator
at a pyrochlore lattice site r in a C2-invariant set of local
spin frames [6,7] (exμ, e

y
μ, ezμ) with the sublattice index

μ ¼ 0, 1, 2, 3 [Fig. 1(b)]. This interaction forces a two-in,
two-out spin ice rule [2]: in each tetrahedron, the energy is
minimized by two spins pointing inwards to and the other
two outwards from the center [Fig. 1(d)], in an analogy to
proton displacements in hexagonal water ice [8]. This
leaves a residual ice entropy associated with the macro-
scopic degeneracy of the spin-ice-rule vacuums. Creating
three-in, one-out or one-in, three-out local defects—
monopoles—with which we assign a charge Q ¼ þ1 or
−1 [Fig. 1(e)], costs half the spin-ice-rule interaction
energy, J=2. These monopoles behave as static quasipar-
ticles obeying an analogous Coulomb law and can only be
excited thermally [4,5]. The average low-temperature
pseudospin and monopole charge configuration, as well
as its excitation spectrum, is depicted in Fig. 2(c).
On the other hand, Yb2Ti2O7 [7,11], Yb2Ti2O7 [12], and

Pr2Zr2O7 [13] have been understood as quantum spin ice
[6,14] where spin-flip exchange interactions, for instance,

H⊥ ¼ J⊥
X

hr;r0i
ðSxrSxr0 þ SyrS

y
r0 Þ; ð2Þ

become active in the background of the spin-ice-rule
interaction Hcl. Spin flips are accompanied by a transfer
of monopole charge [Fig. 1(f)], so that the monopoles
exhibit quantum kinematics as bosonic spinons, leading
to a broadening of charge-1 excitations [Fig. 2(d)]. If the
spin-ice rule interaction dominates over the kinetic energy,
the monopoles remain incompressible with an energy gap
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FIG. 1. (a) The pyrochlore lattice structure, with a global ½111�
direction and (111) kagome and triangular lattice layers. (b) A
pyrochlore lattice site r ¼ R� � bμ, with R� and bμ (μ ¼ 0, 1, 2,
3) being the center of an upward (downward) tetrahedron and a
sublattice vector, respectively. (c) A pictorial representation of a
spin S. (d), (e) Two-in, two-out and three-in, one-out (one-in,
three-out) configurations at a tetrahedron containing a Q ¼ 0 and
þ1 (−1) monopole charge, respectively. (f) A spin exchange
process propagates monopole charge. (g) A superposition of
states that can tunnel into each other by a hexagon ring exchange
process.
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in their excitations. Then, a “diamagnetic current” and the
associated “flux” generated by successive spin flips around
closed paths [Fig. 1(g)] may be fixed. This deconfines the
monopoles and leaves gapless spin excitations described by
“photons” in a magnetic analogue of quantum electrody-
namics [4,15] [Fig. 2(d)withB ¼ 0]. The quantumspin ice is
now in what is called a U(1) quantum spin liquid state [15]
which can also be viewed as a quantum pyrochlore neutral
monopole insulator. This has been evidenced by quantum
Monte Carlo simulations on the minimalHXXZ ¼ Hcl þH⊥
for 0 > J⊥ > Jsf⊥ ¼ −0.104J [16,17]. Conversely, if the
kinetic energy dominates over the spin-ice-rule interaction,

as is the case when J⊥ < Jsf⊥, the monopoles are Bose-
Einstein condensed and thus confined [18], resulting in a
monopole superfluid [Fig. 2(e)]. Note that the superfluid
density of monopoles is proportional to a transverse spin
stiffness ρ [19]. Hence, a finite monopole superfluid density
points to an XY ferromagnet of pseudospins.
Now, of our interest is the fate of quantum spin ice

against a [111] magnetic field B ¼ Bez0. The Hamiltonian
reads

H ¼ HXXZ − B ·
X

Rþ

mRþ ; mRþ ¼
X3

μ¼0

ezμS
z
Rþþbμ

ð3Þ
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FIG. 2. (a) Schematic illustration ofm, δQ, ρð111Þ and ρ½111� as functions of B in the ground state. (b) The global J⊥-B-T phase diagram
obtained by QMC simulations. (c)–(i) Illustrations of the excitation spectrum, as well as the average spatial profiles of spins and
monopoles in each phase or regime named in the languages of pseudospins, spin-ice monopoles, and hard-core bosons (HCBs) [9] (from
top to bottom); the classical spin ice regime (c), U(1) quantum spin liquid regime (d), monopole superfluid phase (e), classical kagome
spin ice regime (f), fully ionized monopole insulator with a full three-in, one-out spin polarization (g), monopole supersolid phase (h),
and kagome valence-bond solid phase (i). For excitation spectra, monopole charge sectors are colored based on whetherQ ¼ −1 (cyan),
0 (gray), orþ1 (red). For graphical representations of spins and monopoles, see Fig. 1. In (a) and (b), transitions and crossovers between
phases and regimes are illustrated by sharp lines and gradients between different colors, respectively. In the classical limit J⊥ ¼ 0, B1

decays to zero, while it is finite for J⊥ ≠ 0. The valence-bond solid phase (B1 < B < B2) and the supersolid phase (B2 < B3) have
different order paramters. (See the main text.) Thus, in the current case of three dimensions, they should be separated by a first-order
phase transition (at B2) or a narrow coexisting phase (not shown), according to Landau theory. The orders of the transitions at B1 and B3

remain open due to the limitation in accessible system sizes. Photons become only two-dimensional in the kagome valence-bond solid,
and thus are eventually gapped out by a confinement of “dual monopoles” [10]. In (a), the spin stiffnesses ρð111Þ, ρ½111� in the vicinity of
zero field, as marked by the striped area, are zero in the quantum pyrochlore spin liquid for J⊥ > Jsf⊥ (d), or finite in the monopole
superfluid phase for J⊥ < Jsf⊥ (e).
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with the magnetization mRþ of the “upward” oriented
tetrahedron centered at Rþ and the sublattice vector bμ
measured from Rþ. We have assumed that only Szr couples
to the magnetic field, as is the case for non-Kramers ions
Pr3þ and Tb3þ [14,20], e.g., in Pr2Ir2O7 [21], Pr2Zr2O7

[13], Pr2Hf2O7 [22], and Tb2Ti2O7 [12,23], where Sxr and
Syr correspond to electric quadrupoles [12,14,20]. In the
classical limit [24–26], J⊥ ¼ 0, B produces two successive
transitions at zero temperature T ¼ 0. [See the J⊥ ¼ 0
plane of Fig. 2(b)]. First, an infinitesimally small B forces
spins in the (111) triangular-lattice layers [Fig. 1(a)] to
point in the field direction, i.e., hSzRþþb0

i ¼ 1=2, while the
remaining spins in the (111) kagome-lattice layer take a
two-in, one-out configuration in each upward tetrahedron,
leading to

P
3
μ¼1hSzRþþbμ

i ¼ −1=2 [Fig. 2(f)] and a mag-

netization plateau at m ¼ jhmRþij ¼ 2=3. The extensive
degeneracy of spin ice partially remains within each
kagome layer, and hence the state is called kagome spin
ice [27–29]. At B ¼ 3J, there occurs an abrupt spin-flip
transition from two-in, two-out to the three-in, one-out fully
polarized state with m ¼ 1. Accordingly, the monopole
charge disproportionation δQ≡ hQRþi ¼ −hQR−

i jumps
from 0 to 1 [Fig. 2(g)], leading to a fully ionized monopole
insulator. (R− is the center of a “downward” oriented
tetrahedron), This transition has been dubbed a monopole
crystallization [30]. Now systematic theoretical under-
standings in the quantum case are called for [31].
We perform continuous imaginary-time world-line quan-

tum Monte Carlo simulations [17,32,33] on the minimal
quantum spin ice model given by Eq. (3) with J⊥ < 0.
Figure 3 presents results on m, δQ and two components of
the spin stiffness, ρð111Þ and ρ½111�, being normal and parallel
to the field, for the particular case of J⊥ ¼ −0.15J < Jsf⊥, in
which the zero-field ground state is a monopole superfluid.
Increasing B up to ∼0.1J at the lowest temperature, m
arises from 0 with a finite slope, i.e., a finite [111] magnetic
susceptibility χ½111�. Both ρð111Þ and ρ½111� steeply decay to
zero, indicating that the monopole superfluid dies out
quickly. Further increasing B up to B1 ∼ 0.4J, m increases
to 2=3 without any apparent singularity. In these low-field
ranges, monopoles are prevented from living on a long-
time scale by the spin-ice-rule interaction, so δQ ¼ 0.
Similar behaviors of continuously increasing m, i.e.,
δQ ¼ 0 and ρð111Þ ¼ ρ½111� ¼ 0, appear from B ¼ 0 when
J⊥ ¼ −0.09J > Jsf⊥.
Using the previous estimate of the velocity of the

photons, 1.49ð4ÞðajJ⊥j3=J2ℏÞ, for B ¼ 0 [17], we find a
ground-state value of χ½111� ∼ 240 for J⊥ ¼ −0.09J. This
indicates that the Curie law displayed by χ½111� in the
classical spin ice regime [26] is cut off by the photons that
lift the macroscopic degeneracy of the spin-ice manifold.
It is therefore natural to assert that the phase out of the
monopole superfluid around B ¼ 0 is adiabatically con-
nected to the case with J⊥ > Jsf⊥ at B ¼ 0, and hence it is a

neutral monopole insulator, namely, a U(1) quantum spin
liquid. From B1 to B2 ∼ 1.4J, m is pinned to the 2=3
plateau where the spin-ice-rule constraint remains to be
satisfied on a long-time scale, i.e., δQ ¼ 0, as in kagome
spin ice. In these field ranges, a nonzero δQ appears only
with moderately large thermal excitations at around T ∼
0.2–0.3J where a Schottky peak appears in the specific heat
for B ¼ 0 [17].
Increasing B above B2, m resumes growing from 2=3

and simultaneously, δQ, ρð111Þ, and ρ½111� start increasing
from zero. This evidences that the positive (negative)
monopole charge sectors on upward (downward) oriented
tetrahedra become softened and Bose condensed. This
establishes a supersolid [34–36] of monopoles showing a
partial charge disproportionation 0 < δQ < 1 of monop-
oles and a long-range transverse spin order [Fig. 2(h)].
Note that m is not an order parameter at finite magnetic
field. The supersolid is distinguished from the superfluid at
zero field by having a finite monopole charge dispropor-
tionation. The spin stiffness is strongly anisotropic with
ρð111Þ being an order of magnitude larger than ρ½111�,
indicating that the transverse spin order is triggered by
correlations within the kagome layers.
A further increase in B drives a phase transition at

B3 ∼ 4J to the fully ionized monopole insulator charac-
terized by δQ ¼ 1 and ρð111Þ ¼ ρ½111� ¼ 0. Reflecting that
the monopole supersolid emerges because of a kinetic
energy gain of monopoles, this phase shrinks with decreas-
ing jJ⊥j and is absent in classical spin ice systems. The
lowest-temperature results are schematically summarized
in Fig. 2(a), and the global phase diagram in Fig. 2(b).

(a) (b)

(c) (d)

FIG. 3. (a) The [111] magnetization per spin. (b) The monopole
charge disproportionation per tetrahedron. (c),(d) The transverse
spin stiffness normal and parallel to the [111] magnetic field. For
all plots, J⊥ ¼ −0.15J and L ¼ 10. Each mesh vertex represents
one QMC data point. Statistical error bars are invisibly small,
except in the low-temperature region of the monopole superfluid
phase in (c) and (d), where they are at most 3 × 10−4. Careful
numerical annealing was employed on cooling to combat severe
freezing problems.
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To understand the low-temperature properties in the
kagome spin ice plateau regime, we compute the spatial
profiles of energy-integrated diffuse neutron-scattering
cross sections. Figure 4(a) shows the profile in the classical
kagome spin ice regime at T ¼ J=20 and B ¼ 1.3J. There
appear short-range correlations associated with a broad
peak at qsl ¼ 2π

a ½ð2=3Þ;−ð2=3Þ; 0� and symmetry-related
points, in addition to a broadened pinch-point singularity at
q ¼ 2π

a ½ð2=3Þ; ð2=3Þ;−ð4=3Þ� and symmetry-related points,
with a being the cubic lattice constant. The pattern clearly
matches the experimental observation in Dy2Ti2O7 [37].
On cooling down to T ¼ J=320, short-range correlations
apparently develop around the superlattice point qsl and
symmetry-related points on the (111) plane [Fig. 4(b)]. This
correlation around qsl is found to be anisotropic. Along the
cut ð2π=aÞðh;−h; 0Þ within the (111) plane, the peak
sharpens on cooling [Fig. 4(c)], while along an out-of-
plane direction ð2π=aÞ½lþ ð2=3Þ; l − ð2=3Þ; l�, the inten-
sity remains flat within error bars [Fig. 4(d)]. Besides,

while the peak intensity at qsl exhibits a logarithmic
increase on cooling as in classical kagome spin ice [25],
it starts being saturated at T ∼ J=30, indicating that a lifting
of the extensive degeneracy of the classical kagome spin ice
manifold is visible on this energy scale. Then, it restarts
increasing more rapidly below T ∼ 0.01J [Fig. 4(e)]. It is
likely that the ground state has a two-dimensional long-
range order enlarging the unit cell by

ffiffiffi
3

p
×

ffiffiffi
3

p
as in the

single-layer quantum kagome spin ice model [38]
[Fig. 2(i)]. At present, however, it is difficult to reliably
collect lower temperature data on our pyrochlore model
with quantum Monte Carlo simulations. It remains open
whether this valence-bond solid forms a two-dimensional
or three-dimensional pattern.
So far, there has been no concrete experimental evidence

of the U(1) quantum spin liquid in candidate quantum spin
ice materials at zero magnetic field. Nevertheless, praseo-
dymium pyrochlores remain promising candidates, since
diffuse neutron-scattering patterns in Pr2Zr2O7 at zero
magentic field [13] are consistent with the previous
numerical simulation on the same model indicating the
emergent photon modes [17]. Also, a step in the magneti-
zation curve has already been observed in Pr2Ir2O7 [21]
most likely as a precursor to the 2=3magnetization plateau.
A careful annealing under a ½111�magnetic field might lead
to the quantum kagome valence-bond solid. Then, it will
also be possible to observe the monopole supersolid by
increasing the field above the plateau and measuring the
electric quadrupole moments with polarized neutron scat-
tering experiments. The monopole supersolid phase, if
observed, is a manifestation of a quantumness in spin
ice and of monopoles.
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