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The pseudogap metal phase of the hole-doped cuprate superconductors has two seemingly unrelated
characteristics: a gap in the electronic spectrum in the “antinodal” region of the square lattice Brillouin zone
and discrete broken symmetries. We present a SU(2) gauge theory of quantum fluctuations of magnetically
ordered states which appear in a classical theory of square lattice antiferromagnets, in a spin-density wave
mean field theory of the square lattice Hubbard model, and in a CP1 theory of spinons. This theory leads to
metals with an antinodal gap and topological order which intertwines with the observed broken symmetries.
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A remarkable property of the pseudogap metal of the
hole-doped cuprates is that it does not exhibit a “large”
Fermi surface of gapless electronlike quasiparticles exci-
tations; i.e., the size of the Fermi surface is smaller than
expected from the classic Luttinger theorem of Fermi liquid
theory [1]. Instead, it has a gap in the fermionic spectrum
near the “antinodal” points [ðπ; 0Þ and ð0; πÞ] of the square
lattice Brillouin zone. Gapless fermionic excitations appear
to be present only along the diagonals of the Brillouin zone
(the “nodal” region). One way to obtain such a Fermi
surface reconstruction is by a broken translational sym-
metry. However, there is no sign of broken translational
symmetry over a wide intermediate temperature range [2],
and also at low temperatures and intermediate doping [3],
over which the pseudogap is present. With full translational
symmetry, violations of the Luttinger theorem require the
presence of topological order [4–6].
A seemingly unrelated property of the pseudogap metal

is that it exhibits discrete broken symmetries, which
preserve translations, over roughly the same region of
the phase diagram over which there is an antinodal gap in
the fermionic spectrum. The broken symmetries include
lattice rotations, interpreted in terms of an Ising-nematic
order [7–10], and one or both of inversion and time-reversal
symmetry breaking [11–16]. Luttinger’s theorem implies
that none of these broken symmetries can induce the
needed fermionic gap by themselves.
The coexistence of the antinodal gap and the broken

symmetries can be explained by intertwining them [17–19],
i.e., by exploiting flavors of topological order which are
tied to specific broken symmetries. Here we show that
broken lattice rotations, inversion, and time reversal appear
naturally in several models appropriate to the known
cuprate electronic structure.
We consider quantum fluctuations of magnetically

ordered states found in two different computations: a
classical theory of frustrated, insulating antiferromagnets
on the square lattice and a spin-density wave theory of

metallic states of the square lattice Hubbard model. The
types of magnetically ordered states found are sketched in
Fig. 1(a). The quantum fluctuations of these states are
described by a SU(2) gauge theory, and this leads to the loss
of magnetic order and the appearance of phases with
topological order and an antinodal gap in the fermion
spectrum. We find that the topological order intertwines
with precisely the observed broken discrete symmetries, as
shown in Fig. 1(b). We further show that the same phases
are also obtained naturally in a CP1 theory of bosonic
spinons supplemented by Higgs fields conjugate to long-
wavelength spinon pairs.
Magnetic order.—We examine states in which the

electron spin Ŝi on site i of the square lattice, at position
ri, has the expectation value

hŜii ¼ N0½cos ðK · riÞ cosðθÞêx þ sin ðK · riÞ cosðθÞêy
þ sinðθÞêz�: ð1Þ

The different states we find are [see Fig. 1(a)] (D0) a Néel
state with collinear antiferromagnetism at wave vector
ðπ; πÞ, with K ¼ ðπ; πÞ, θ ¼ 0, (A0) a canted state, with
ðπ; πÞ Néel order coexisting with a ferromagnet moment
perpendicular to the Néel order, with K ¼ ðπ; πÞ,
0 < θ < π=2, (B0) a planar spiral state, in which the spins
precess at an incommensurate wave vector K with θ ¼ 0,
and (C0) a conical spiral state, which is a planar spiral
accompanied by a ferromagnetic moment perpendicular
to the plane of the spiral [20] with K incommensurate,
0 < θ < π=2.
First, we study the square lattice spin Hamiltonian with

near-neighbor antiferromagnetic exchange interactions
Jp > 0 and ring exchange K [21–25]:

HJ ¼
X
i<j

JijŜi · Ŝj þ 2K
X
k
j□

l
i

½ðŜi · ŜjÞðŜk · ŜlÞ

þ ðŜi · ŜlÞðŜk · ŜjÞ − ðŜi · ŜkÞðŜj · ŜlÞ�: ð2Þ
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Jij ¼ Jp when i and j are pth nearest neighbors, and we
allow Jp only with p ¼ 1, 2, 3, 4 nonzero. The classical
ground states are obtained by minimizingHJ over the set of
states in Eq. (1); results are shown in Figs. 2(a)–2(c). We
find the states A0, B0, C0, and D0, all of which meet at a
multicritical point, just as in the schematic phase diagram in
Fig. 1(a). A semiclassical theory of quantum fluctuations
about these states, starting from the Néel state, appears in
Supplemental Material Sec. A [26].
For metallic states with spin-density wave order [32–35],

we study the Hubbard model

HU ¼ −
X
i<j;α

tijc
†
i;αcj;α − μ

X
i;α

c†i;αci;α þU
X
i

n̂i;↑n̂i;↓ ð3Þ

of electrons ci;α, with α ¼ ↑;↓ a spin index, tij ¼ tp when i
and j are pth nearest neighbors, and we take tp with p ¼ 1,
2, 3, 4 nonzero.U is the on-site Coulomb repulsion, and μ is
the chemical potential. The electron density n̂i;α ≡ c†i;αci;α,

while the electron spin Ŝi ≡ ð1=2Þc†i;ασαβci;β, with σ the
Pauli matrices. We minimized HU over the set of free
fermion Slater determinant states obeying Eq. (1) while
maintaining uniform charge and current densities; Results
are illustrated in Figs. 2(d)–2(f), and details appear in
Supplemental Material Sec. B [26]. Again, note the appear-
ance of the magnetic ordersA0,B0,C0, andD0, although now
these coexist with Fermi surfaces and metallic conduction.
SU(2) gauge theory.—We describe quantum fluctuations

about states of HU obeying Eq. (1) by transforming the

(a) (b) (d) (e)

(f)(c)

FIG. 2. (a) Phase diagram ofHJ , for a spin Smodel in the classical limit S → ∞, exhibiting all phases of Fig. 1(a). The subscript of the
labels ðB0Þ and ðC0Þ indicates thewavevectorK ¼ ðKx;KyÞ of the spiral. Note that the phasesA0,C0,B0, andD0meet at amulticritical point,
just as in Fig. 1(a). (b) and (c) showKx,Ky, and the canting angle θ along two different one-dimensional cuts of the phase diagram in (a).
The phase diagram resulting from the spin-density wave analysis of the Hubbard model (3) can be found in (d). Besides an additional
ferromagnetic phase, denoted by ðF0Þ, we recover all the phases of the classical phase diagram in (a). Parts (e) and (f) showone-dimensional
cuts of the spin-density wave phase diagram. In all figures, solid (dashed) lines are used to represent second- (first-) order transitions.

(a) (b)

FIG. 1. (a) Schematics of the magnetically ordered states obtained in the classical antiferromagnet and in the spin-density wave theory
of the Hubbard model. (b) Corresponding states obtained after quantum fluctuations restore spin rotation symmetry. Phase D has U(1)
topological order in the metal but is unstable to the appearance of VBS order in the insulator. The crossed circles in phase C0 indicate a
canting of the spins into the plane. The labels s1, s2, P, and Qa refer to the CP1 theory: The phases in (a) are obtained for small g, and
those in (b) for large g.
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electrons to a rotating reference frame by a SU(2) matrix
Ri [36]:�

ci;↑
ci;↓

�
¼ Ri

�
ψ i;þ
ψ i;−

�
; R†

i Ri ¼ RiR
†
i ¼ 1: ð4Þ

The fermions in the rotating reference frame are spinless
“chargons” ψ s, with s ¼ �, carrying the electromagnetic
charge. In the same manner, the transformation of the
electron spin operator Ŝi to the rotating reference frame is
proportional to the “Higgs” field Hi [36]:

σ ·Hi ∝ R†
i σ · ŜiRi: ð5Þ

The new variables ψ , R, and H provide a formally
redundant description of the physics of HU, as all observ-
ables are invariant under a SU(2) gauge transformation Vi
under which

Ri → RiV
†
i

σ ·Hi → Viσ ·HiV
†
i

�
ψ i;þ
ψ i;−

�
→ Vi

�
ψ i;þ
ψ i;−

�
; ð6Þ

while ci and Ŝi are gauge invariant. The action of the SU(2)
gauge transformation Vi should be distinguished from the
action of global SU(2) spin rotations Ω under which

Ri → ΩRi

σ · Ŝi → Ωσ · ŜiΩ†

�
ci↑
ci↓

�
→ Ω

�
ci↑
ci↓

�
; ð7Þ

while ψ and H are invariant.
In the language of this SU(2) gauge theory [36,37], the

phases with magnetic order obtained above appear when
both R and H are condensed. We may choose a gauge in
which hRi ∝ 1, and so the orientation of the H condensate
is the same as that in Eq. (1):

hHii ¼ H0

�
cos ðK · riÞ cosðθÞêx þ sin ðK · riÞ cosðθÞêy

þ sinðθÞêz
�
: ð8Þ

We can now obtain the phases of HU with quantum
fluctuating spin-density wave order, ðA; B;C;DÞ shown in
Fig. 1(b), in a simple step: The quantum fluctuations lead to
fluctuations in the orientation of the local magnetic order and
so remove the R condensate leading to hRi ¼ 0. The Higgs
fieldHi retains the condensate in Eq. (8), indicating that the
magnitude of the local order is nonzero. In such a phase, spin
rotation invariance ismaintainedwith hŜi ¼ 0, but the SU(2)
gauge group has been “Higgsed” down to a smaller gauge
groupwhich describes the topological order [17,38–42]. The
values of θ and K in phases ðA; B;C;DÞ obey the same
constraints as the corresponding magnetically ordered
phases ðA0; B0; C0; D0). In phaseD, the gauge group is broken
down to U(1), and there is a potentially gapless emergent
“photon”; in an insulator, monopole condensation drives
confinement and the appearance of valence bond solid (VBS)

order, but the photon survives in a metallic, U(1) “algebraic
charge liquid” (ACL) state [43] (which is eventually unstable
to fermion pairing and superconductivity [44]). The remain-
ing phases A, B, and C have a noncollinear configuration of
hHii, and then onlyZ2 topological order survives [17]: Such
states are ACLs with stable, gapped, “vison” excitations
carryingZ2 gauge fluxwhich cannot be created singly by any
local operator. PhaseA breaks no symmetries, phaseBbreaks
lattice rotation symmetry leading to Ising-nematic order
[17,38], and phase C has broken time-reversal and mirror
symmetries (but not their product), leading to current loop
order [45]. All four ACL phases ðA; B;C;DÞ may also
become “fractionalized Fermi liquids” (FL*) [4,5] by the
formation of bound states between the chargons and R; the
FL* states have a Pauli contribution to the spin susceptibility
from the reconstructed Fermi surfaces.
The structure of the fermionic excitations in the phases of

Fig. 1(b), and the possible broken symmetries in the Z2

phases, can be understood from an effective Hamiltonian
for the chargons. As described in Supplemental Material
Sec. C [26], a Hubbard-Stratonovich transformation on
HU, followed by the change of variables in Eqs. (4) and (5),
and a mean field decoupling leads to

Hψ ¼ −
X
i<j;s

tijZijψ
†
i;sψ j;s − μ

X
i;s

ψ†
i;sψ i;s

−
X
i;s;s0

Hi · ψ
†
i;sσss0ψ i;s0 : ð9Þ

The chargons inherit their hopping from the electrons, apart
from a renormalization factor Zij, and experience a
Zeeman-like coupling to a local field given by the con-
densate of H: So the Fermi surface of ψ reconstructs in the
same manner as the Fermi surface of c in the phases with
conventional spin-density wave order. Note that this hap-
pens here even though translational symmetry is fully
preserved in all gauge-invariant observables; the apparent
breaking of translational symmetry in the Higgs condensate
in Eq. (8) does not transfer to any gauge-invariant observ-
ables, showing how the Luttinger theorem can be violated
by the topological order [4–6] in Higgs phases. However,
other symmetries are broken in gauge-invariant observ-
ables: Supplemental Material Sec. C [26] examines bond
and current variables, which are bilinears in ψ , and finds
that they break symmetries in phases B and C noted above.
CP1 theory.—We now present an alternative description

of all eight phases in Fig. 1 starting from the popular CP1

theory of quantum antiferromagnets. In principle (as we
note below and in Supplemental Material Sec. D [26]), this
theory can be derived from the SU(2) gauge theory above
[46] after integrating out the fermionic chargons and
representing R in terms of a bosonic spinon field zα by

Ri ¼
� zi;↑ −z�i;↓
zi;↓ z�i;↑

�
; jzi;↑j2 þ jzi;↓j2 ¼ 1: ð10Þ
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However, integratingout the chargons is safe onlywhen there
is a chargon gap, and so the theories below can compute
critical properties of phase transitions only in insulators.
We will not start here from the SU(2) gauge theory but

present a direct derivation from earlier analyses of the
quantum fluctuations of an S ¼ 1=2 square lattice anti-
ferromagnet near a Néel state, which obtained the following
action [47] for a CP1 theory over two-dimensional space
[r ¼ ðx; yÞ] and time (t):

S ¼ 1

g

Z
d2rdtjð∂μ − iaμÞzαj2 þ SB: ð11Þ

Here μ runs over three spacetime components, and aμ is an
emergent U(1) gauge field. The local Néel order n is related
to the zα by n ¼ z�ασαβzβ, where σ are the Pauli matrices.
The U(1) gauge flux is defined modulo 2π, and so the
gauge field is compact and monopole configurations with
total flux 2π are permitted in the path integral. The
continuum action in Eq. (11) should be regularized to
allow such monopoles. SB is the Berry phase of the
monopoles [48–50]. Monopoles are suppressed in the
states with Z2 topological order [17,38], and so we do
not display the explicit form of SB.
The phases of the CP1 theory in Eq. (11) have been

extensively studied. For small g, we have the conventional
Néel state, D0 in Fig. 1(a), with hzαi ≠ 0 and hni ≠ 0. For
large g, the zα are gapped, and the confinement in the
compact U(1) gauge theory leads to VBS order [49,50],
which is phase D in Fig. 1(b). A deconfined critical theory
describes the transition between these phases [51].
We now want to extend the theory in Eq. (11) to avoid

confinement and obtain states with topological order. In a
compact U(1) gauge theory, condensing a Higgs field with
charge 2 leads to a phase with deconfined Z2 charges [52].
Such a deconfined phase has the Z2 topological order
[17,38–42] of interest to us here. So we search for candidate
Higgs fields with charge 2, composed of pairs of long-
wavelength spinons, zα. We also require the Higgs field to
be spin rotation invariant, because we want the Z2

topological order to persist in phases without magnetic
order. The simplest candidate without spacetime gradients,
εαβzαzβ (where εαβ is the unit antisymmetric tensor),
vanishes identically. Therefore, we are led to the following
Higgs candidates with a single gradient (a ¼ x, y):

P ∼ εαβzα∂tzβ; Qa ∼ εαβzα∂azβ: ð12Þ

These Higgs fields have been considered separately before.
Condensing Qa was the route to Z2 topological order in
Ref. [38], while P appeared more recently in Ref. [53].
The effective action for these Higgs fields and the

properties of the Higgs phases follow straightforwardly
from their transformations under the square lattice space
group and time reversal: We collect these in Table I.

From these transformations, we can add to the action
S → S þ R

d2rdtLP;Q:

LP;Q¼ jð∂μ−2iaμÞPj2þjð∂μ−2iaμÞQaj2
þλ1P�εαβzα∂tzβþλ2Q�

aεαβzα∂azβþH:c:

− s1jPj2− s2jQaj2−u1jPj4−u2jQaj4þ�� � ; ð13Þ

where we do not display other quartic and higher-order
terms in the Higgs potential.
For large g, we have hzαi ¼ 0 and can then determine the

spin liquid phases by minimizing the Higgs potential as a
function of s1 and s2.When there is noHiggs condensate,we
noted earlier that we obtain phaseD in Fig. 1(b). Figure 1(b)
also indicates that the phases A, B, andC are obtained when
one or both of the P andQa condensates are present. This is
justified in Supplemental Material Sec. D [26] by a compu-
tation of the quadratic effective action for the zα from the SU
(2) gauge theory:We find just the terms with linear temporal
and/or spatial derivatives as would be expected from the
presence of P and/or Qa condensates in LP;Q.
We can confirm this identification from the symmetry

transformations in Table I: (A) There is only a P con-
densate, and the gauge-invariant quantity jPj2 is invariant
under all symmetry operations. Consequently, this is a Z2

spin liquid with no broken symmetries; it has been
previously studied by Yang and Wang [53] using bosonic
spinons. (B) With a Qa condensate, one of the two gauge-
invariant quantities jQxj2 − jQyj2 or Q�

xQy þQxQ�
y must

have a nonzero expectation value. Table I shows that these
imply Ising-nematic order, as described previously
[17,38,54]. We also require hQxihQ�

yi to be real to avoid
breaking translational symmetry. (C) With both and P and
Qa condensates nonzero, we can define the gauge-invariant
order parameter Oa ¼ PQ�

a þ P�Qa (again, hPihQ�
ai

should be real to avoid translational symmetry breaking).
The symmetry transformations ofOa show that it is precisely
the “current-loop” order parameter of Ref. [19]: It is odd
under reflection and time reversal but not their product.
A similar analysis can be carried out at small g, where zα

condenses and breaks spin rotation symmetry. The structure
of the condensate is determined by the eigenmodes of the
zα dispersion in the A, B, C, D phases, and this determines

TABLE I. Symmetry signatures of various fields under time
reversal (T ), translation by a lattice spacing along x (Tx),
reflection about a lattice site with x → −x, y → y (Ix), and
rotation by π=2 about a lattice site with x → y, y → −x (Rπ=2).

T Tx Ix Rπ=2

zα εαβzβ εαβz�β zα zα
Qx Qx Q�

x −Qx Qy
Qy Qy Q�

y Qy −Qx
P −P P� P P
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that the corresponding magnetically ordered states are
precisely A0, B0, C0, D0, as in Fig. 1(a).
We have shown here that a class of topological orders

intertwine with the observed broken discrete symmetries in
the pseudogap phase of the hole-doped cuprates. The same
topological orders emerge from a theory of quantum
fluctuations of magnetically ordered states obtained by
four different methods: the frustrated classical antiferro-
magnet, the semiclassical nonlinear sigma model, the spin-
density wave theory, and the CP1 theory supplemented by
the Higgs fields obtained by pairing spinons at long
wavelengths. The intertwining of topological order and
symmetries can explain why the symmetries are restored
when the pseudogap in the fermion spectrum disappears at
large doping.
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