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When a charged membrane separates two salt solutions of different concentrations, a potential difference
appears due to interfacialDonnan equilibriumand the diffusion junction.Here,we report a newmechanism for
the generation of a membrane potential in polarizable conductive membranes via an induced surface charge.
It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged
membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion
mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-
charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and
NaCl aqueous solutions.

DOI: 10.1103/PhysRevLett.119.226001

The understanding of ion transport in nanopores and
nanochannels is of fundamental importance in various areas
of science and technology, such as separation and purifi-
cation [1], energy conversion [2], chemical sensors [3], and
cell physiology [4]. Inspired by biological ion channels and
pumps, researchers are working on the development of their
synthetic analogues [5]. Tunable ion transport is realized by
combining the pore design strategy (geometry and surface
chemical modification) with external stimuli, such as the
transmembrane potential, solution pH, temperature, light,
etc. [6]. The ion transport through charged or uncharged
membranes separating electrolytes with different concen-
trations has received much attention of researchers in
various contexts including the design of nanofluidic devi-
ces [7], power generation from salinity gradients [8],
potentiometric sensing [9], asymmetric diffusion transport
[10], and osmotic flow generation [11].
A new class of membranes containing gold nanotubules

that span a complete thickness of a porous polymeric support
was suggested in Ref. [12]. It was shown that their selectivity
can be reversible switched from anion to cation by changing
the potential applied to the conductive membrane surface.
Note that the transport of charged species through nanopores
with polarizable walls can induce a surface charge and, thus,
alter the pore transport characteristics. The induction of
surface charge by an external electric field was employed in
Ref. [13] for realizing nanopores with ion current rectifica-
tion. The induced-charge electrokinetic phenomena are
actively investigated nowadays [14] due to potential appli-
cations in microfluidic pumping and mixing [15], particle
manipulation [16], capacitive deionization [17], and control
of ionic transport in nanochannels [18].
The ionic selectivity of a membrane can be characterized

by the potential difference at zero current, which develops
between two electrolyte solutions of different concentrations

separated by the membrane [19,20]. In charged membranes,
this difference arises due to Donnan equilibrium between the
diffusion and electric forces at membrane-solution interfaces
and the diffusion potential associated with different ionic
mobilities [21]. The phenomenon of the membrane potential
plays a fundamental role in the functioning of artificial and
biological membranes [1–4].
In this Letter, we report a new mechanism for the

generation of a membrane potential in polarizable nano-
porousmembranes. It occurs due to the induction of a surface
charge by an electric field resulting from the diffusion of ions
with different mobilities. It is shown theoretically and
experimentally that this effect leads to a dramatic enhance-
ment of the diffusion potential in uncharged polarizable
membranes in comparison with their dielectric, nonpolariz-
able counterparts.
Theoretical model.—A membrane is modeled as an array

of cylindrical pores of length Lp and radius Rp, which
connect two reservoirs with the 1-1 electrolyte of concen-
trations CL and CR. The flow and ion transport are described
by the space-charge model derived from Navier-Stokes,
Nernst-Planck, and Poisson equations [22]. We introduce
characteristic scales of radial Rp and axial Lp lengths,
concentration C0 ¼ 1 mM, electric potential VT , ion fluxes
D−C0=Lp, velocity D−=Lp, pressure C0RgT, and surface
charge density εε0VT=Rp. Here VT ¼ RgT=F is the thermal
voltage, D� are the cation and anion diffusion coefficients,
and εε0 is the dielectric constant. The dimensionless potential
φ, ion concentrations c�, and pressure p are written,
respectively, as [22]

φ ¼ ϕvðzÞ þ ψðr; zÞ; c� ¼ cvðzÞ exp½∓ψðr; zÞ�;
p ¼ pvðzÞ þ 2cvðzÞ cosh½ψðr; zÞ�:
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The function ψ satisfies the Poisson equation

1

r
∂
∂r

�
r
∂ψ
∂r

�
¼ cvðzÞ

λ2
sinhψ ; ð1Þ

with boundary conditions ∂ψ=∂rð0; zÞ ¼ 0 and

ψð1;zÞ¼φs−ϕvðzÞ ðconst surface potentialÞ ð2Þ
or

∂ψ
∂r ð1; zÞ ¼ σs ðconst surface chargeÞ: ð3Þ

Here λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0VT=2FC0

p
=Rp is the dimensionless Debye

length. The virtual variables ϕv, cv, and pv are found by
solving the ordinary differential equation system�

dpv

dz
;
1

cv

dcv
dz

;
dϕv

dz

�
T
¼ Lðv̄; j̄; īÞT; ð4Þ

where v̄ is the volume flux (velocity), j̄ ¼ j̄þ þ j̄− is the ion
flux, and ī ¼ j̄þ − j̄− is the ionic current (all fluxes are
dimensionless and cross-sectionally averaged), whileL is the
symmetric 3 × 3 matrix, which coefficients LijðzÞ are calcu-
lated using the solution ψðr; zÞ; see Supplemental Material
[23]. The membrane potential is measured at zero current
ī ¼ 0 and equal pressures in both reservoirs. In this case,
system (4) becomes

dpv

dz
¼ L11v̄þ L12j̄;

1

cv

dcv
dz

¼ L12v̄þ L22j̄;

dϕv

dz
¼ L13v̄þ L23j̄: ð5Þ

The corresponding boundary conditions are

z ¼ 0∶ pv ¼ −2cL; cv ¼ cL; ϕv ¼ 0;

z ¼ 1∶ pv ¼ −2cR; cv ¼ cR; ϕv ¼ Δφ; ð6Þ
where Δφ is the dimensionless potential difference between
the reservoirs (membrane potential).
We assume that the conductive nanopore wall is ideally

polarizable and there is no charge exchange between the
wall and electrolyte. The polarization by the electric field
developing inside the pore causes the redistribution of the
surface charge. In this case, the floating boundary condition
should be used [18]:Z

1

0

∂ψ
∂r ð1; zÞdz ¼ σ̄s: ð7Þ

Here σ̄s ¼ σ̄ðεε0VT=RpÞ−1 is the dimensionless total sur-
face charge density, while the dimensional total surface
charge is given by σ̄2πRpLp.
To the best of our knowledge, this is the first attempt of

extending the classical space-charge model with a constant
surface charge to nanopores with polarizable walls. The use
of boundary condition (2) and integral condition (7) intro-
duces somedifficulties. The surface potentialφs is not known

in advance. The virtual potential ϕvðzÞ is found by the
integration of system (5) with coefficients LijðzÞ, which in
turn depend on the solution ψðr; zÞ of problem (1) and (2). It
makes the system strongly coupled and nonlinear.
Let us express dz ¼ dcv½cvðL12v̄þ L22j̄Þ�−1 from the

second equation in (5) and substitute it into the first and third
equations. Integration of the resulting equations (5) over the
pore length with the help of boundary conditions (6) gives

Z
cR

cL

L11f̄ þ L12

cvðL12f̄ þ L22Þ
dcv þ 2ðcR − cLÞ ¼ 0; ð8Þ

j̄ ¼
Z

cR

cL

dcv
cvðL12f̄ þ L22Þ

; ð9Þ

ϕvðcvÞ ¼
Z

cv

cL

L13f̄ þ L23

cvðL12f̄ þ L22Þ
dcv; ð10Þ

where f̄ ¼ v̄=j̄. It follows from (1), (2), and (10) that one can
write ψ ¼ ψðr; cvÞ, ϕv ¼ ϕðcvÞ, and Lij ¼ LijðcvÞ; see
also [22,23].
The calculation is performed as follows. For a non-

polarizable dielectric nanopore with constant surface
charge density σs, problem (1) and (3) is solved numerically
for a set of successive values cv ¼ cvk, k ¼ 0;…; n, where
cv0 ¼ cL and cvn ¼ cR. Then the ratio of fluxes f̄ ¼ v̄=j̄ is
found numerically from (8), and the ion flux j̄ is obtained
from (9). The potential difference between reservoirs Δφ ¼
ϕvðcRÞ is determined from (10), while the virtual variables
are found by integration of (5) and (6). For a polarizable
conductive nanopore with constant total surface charge
density σ̄s, the surface potential φs should be determined in
order to satisfy the floating boundary condition (7). Here
problem (1) and (2) is solved for each cvk at fixed φs and f̄.
Note that ϕvðcv0Þ ¼ ϕvðcLÞ ¼ 0. The value ϕvðcvkÞ is
found iteratively starting from ϕvðcv;k−1Þ and repeating
the solution of (1) and (2) followed by the application of
(10). The calculation is performed iteratively to find the
fluxes ratio f̄ from (8). Then j̄ is calculated from (9), and
virtual variables are obtained by the integration of (5) and
(6). It allows us to find ψðr; zÞ ¼ ψ(r; cvðzÞ) and finally
calculate the integral in the left-hand side of (7). The whole
procedure is iterated to find the surface potential φs, with
which (7) is satisfied. Note that a numerical solution of
Eq. (1) requires specifying ψð0; zÞ ¼ ψ0 [23]. The initial
approximation for ψ0 is obtained analytically [24].
For a nonpolarizable and uncharged (σ ¼ 0) nanopore,

the dimensional potential, concentrations, and pressure can
be determined analytically [20]:

Φ ¼ VT
D − 1

Dþ 1
ln
CL

C�
; C� ¼ CL þ CR − CL

L
z; ð11Þ

and P ¼ 0. Here D ¼ Dþ=D− is the ratio of ion diffusion
coefficients (or mobilities u� ¼ D�=VT). In this case, the
membrane potential coincides with the diffusion potential:
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ΔΦ ¼ VT
D − 1

Dþ 1
ln
CL

CR
: ð12Þ

Membrane preparation and potential measurement.—To
validate the predictions of the theoretical model experimen-
tally, we have synthesized membranes with a dielectric as
well as conductive nanoporous structure. Themembranes are
prepared fromNafen™ alumina nanofibers supplied byANF
Technologies (Estonia). The diameter of a single nanofiber is
10–15nm, and the length is up to 100mm.The nanofibers are
dispersed in deionizedwater (theweight ratio of Nafen:water
is 1∶200) and agitated with a magnetic stirrer for 30 min
followed by 15 min of ultrasonic treatment (Sonics &
Materials VC-505, USA). The suspension is filtered through
the rough Teflon filter (average pore size of 0.6 μm) to
produce a membrane in the form of a circular disk with the
diameter of ∼40 mm and thickness of ∼400 μm. The
membrane is dried in air and sintered at 800 °C during 4
hr. Chemical vapor deposition is used to form conductive
carbon layers on the nanofibrous membrane structure. The
synthesis is conducted in a homemade reactor at 900 °C
(heating rate of 20–30 °C=min) in a propane-nitrogen
mixture (1=15) with the total flow rate of 4000 cm3=min
during 60 s. The samples with and without deposited carbon
will be referred to as the C-Nafen membrane and the Nafen
membrane, respectively. The dielectric Nafen membrane is
characterized by the porosity of 75%, a specific surface area
of 146 m2=g, and a maximum of pore diameter distribution
curve at 28 nm. The corresponding parameters of conductive
C-Nafen membrane are 62%, 107 m2=g, and 16 nm [25].
Both types of membranes are hydrophilic.
The membrane potential is measured in KCl and NaCl

aqueous solutions in a laboratory-made electrochemical cell.
The membrane is clamped between two half-cells with
reference 4.2 MAg=AgCl electrodes. The latter are con-
nected to the potentiostat PI-50Pro (Elins, Russia), which
measures the cell electromotive force. First, the solutionwith
fixed concentrationCR is placed in both half-cells and kept at
a room temperature of 25 °C during 12 hr. Themeasurements
are performed by successively increasing the electrolyte
concentration in the left half-cell. At each step, the system is
allowed to equilibrate during 30min before themeasurement
is made. More information about the membrane preparation
and potential measurements can be found in Refs. [23,25].
Results and discussion.—The comparison between non-

polarizable and polarizable uncharged nanopores is shown in
Fig. 1 for NaCl aqueous solution with Dþ ¼ 1.33 × 10−9

and D− ¼ 2.03 × 10−9 m2=s. In the former case described
by Eq. (11), the concentrations of cations and anions
coincide. The potential decrease results in the electric field
E ¼ −∇Φ, which speeds up the slower diffusing cation and
retards the faster diffusing anion to make the total ion fluxes
equal. In a polarizable pore, this electric field induces the
surface charge, which changes almost linearly from the pore
entrance (Z=Lp ¼ 0) to the pore exit (Z=Lp ¼ 1) while

keeping the total surface charge σ̄ zero; see Fig. 1(d). It results
in the higher concentration of cations (anions) at the
negatively (positively) charged part of the pore [Fig. 1(b)].
The separation of charge induces theDonnan potentials at the
pore entrance and exit, which both contribute to the enhance-
ment of the membrane potential in comparison with the
nonpolarizable pore [Fig. 1(a)]. It can be seen from Fig. 2(a)
that the surface potential is constant (−2.7 mV), while the
potential increases (decreases) in those regions of the pore
where the concentration of cations (anions) is higher. The
separation of charge also results in osmotic pressure jumps at
the pore entrance and exit; see Fig. 1(c). They in turn induce
the osmotic flow in the direction of higher salt concentration
with the average velocity of 23 nm=s.
The calculated membrane potentials of uncharged non-

polarizable (σ ¼ 0, Rp ¼ 14 nm) and polarizable (σ̄ ¼ 0,
Rp ¼ 8 nm) membranes in KCl and NaCl solutions are
shown in Fig. 3 by dashed curves. The induced-charge

FIG. 1. The cross-sectionally averaged potential (a), concen-
trations (b), pressure (c), and surface charge density (d) for
nonpolarizable (σ ¼ 0, dashed curves) and polarizable
(σ̄ ¼ 0, solid curves) nanopores in NaCl solution. Rp ¼ 8 nm,
Lp ¼ 400 μm, CL ¼ 10 mM, and CR ¼ 1 mM.

FIG. 2. The potential (a) and concentration (b) fields in a
polarizable nanopore with σ̄ ¼ 0 in NaCl solution (for param-
eters, see Fig. 1).
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enhancement of the diffusion potential for KCl solution
with almost equal ion diffusion coefficients (Dþ ¼
1.96 × 10−9 m2=s, Dþ=D− ¼ 0.96) is quite significant
[more than 16 times at logðCL=CRÞ ¼ 3]. For NaCl
solution, the enhancement is around 2.6 times at the same
concentration contrast, while the induced surface charge
density varies in the range from −8.58 to 8.06 mC=m2

along the pore [here the variation is much higher than that
shown in Fig. 1(d)].
The theoretical results are well supported by the exper-

imental data. The measurements for the Nafen membrane
were performed near the point of zero charge for the
alumina surface, which corresponds to pH ¼ 9.1 in KCl
solution [26] and pH ¼ 8.1 in NaCl solution [27,28] (see
also Supplemental Material [23]). The values of surface
charge density σ obtained by fitting of the experimental
data to the theoretical model of a nonpolarizable nanopore
with Rp ¼ 14 nm are presented in Table I. They are rather
low, so the fitted curves only slightly deviate from those
corresponding to σ ¼ 0.
For a C-Nafen membrane with a conductive carbon

surface, the adsorption of alkali metal cations on the defects
of the carbon structure can occur and modify the surface
charge [25,29]. To minimize this effect, low electrolyte
concentrations were used: CR ¼ 0.1 mM for KCl and

CR ¼ 1 mM for NaCl. In this case, the experimental data
were fitted to the theoretical model of the polarizable
nanopore to obtain the total surface charge density σ̄ and
pore radius Rp; see Table I. The obtained values of σ̄ are
positive but rather small, while the Rp values are in good
agreement with low-temperature nitrogen adsorption data
(8 nm) [25]. So, the fitted curves are close to those of fully
uncharged (σ̄ ¼ 0) polarizable membranes in Fig. 3.
The diffusion potential of an uncharged nonpolarizable

membrane depends only on the ratio of concentrations and
ion diffusion coefficients; see Eq. (12). In the case of a
membrane with polarizable pores, the situation is strikingly
different. Figure 4(a) shows that the enhancement of the
membrane potential becomes stronger with decreasing the
concentration CR. The calculations reveal that the variation
of the averaged potential along the pore becomes smaller,
while the Donnan potentials at the pore entrance and exit
become larger when CR decreases at fixed ratio CL=CR; see
also Fig. 1. At smaller concentrations, the Debye length is

FIG. 3. Membrane potential of Nafen (blue lines) and C-Nafen
(red lines) membranes in KCl (a) and NaCl (b) aqueous solutions.
Experimental data (points), calculations for uncharged nonpolar-
izable (blue) and polarizable (red) pores (dashed curves), fitting
of experimental data (solid curves), and ideal anion selectivity
(solid black line). Error bars, 1 s.d.

TABLE I. Experimental cases with fitted values of σ (Nafen
membranes) or Rp and σ̄ (C-Nafen membranes).

Electrolyte Aqueous KCl Aqueous NaCl
Membrane Nafen C-Nafen Nafen C-Nafen

CR (mM) 1 0.1 1 1
Rp (nm) 14 8.8 14 9.4
σ or σ̄ (mC=m2) 0.329 0.039 0.128 0.045

FIG. 4. The effect of concentration CR (a) and pore radius Rp
(b) on the membrane potential in NaCl aqueous solution for
σ̄ ¼ 0 (blue curves). Membrane potential for σ ¼ 0 (dashed line)
and ideal anion selectivity (solid black line). The effect of the
diffusion coefficients ratio on the membrane potential (c) for
uncharged nonpolarizable (dashed curves) and polarizable (solid
curves) nanopores.
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larger, which means a stronger overlap of electric double
layers created by the induced surface charge. The same effect
can be achieved by decreasing the pore radius; see Fig. 4(b).
The membrane potential shows a significant increase when
Rp decreases, but even at large Rp its enhancement is quite
noticeable in comparison with the nonpolarizable case.
The effect of the ion diffusion coefficients ratio on the

membrane potential is shown in Fig. 4(c). For both non-
polarizable and polarizable pores, ΔΦ ¼ 0 when D ¼
Dþ=D− ¼ 1, while it approaches the Nernst potential when
D → 0; see Eq. (12). In the range 0 < D < 1, a dramatic
enhancement of thediffusionpotential in a polarizable pore is
observed. It becomes largerwith increasing the concentration
contrast. Especially unusual is the strong rise of the mem-
brane potential magnitude near D ¼ 1. It means that a very
small difference between the diffusion coefficients can result
in a large change of themembrane potential. This conclusion
is confirmed by the experimental data in KCl solution; see
Fig. 3(a). It can be shown from the model equations that, at
the same ratio of smaller to larger diffusivity, the magnitude
of themembrane potential is the same, but its sign is negative
when Dþ < D− and positive when Dþ > D−.
In summary, we have described a new mechanism for the

generation of a membrane potential in polarizable nano-
porous membranes. The electric field generated by the
diffusion of ions with different mobilities induces a non-
uniform surface charge, which results in a charge separation
inside the nanopore. The corresponding Donnan potentials
appear at the pore entrance and exit leading to a dramatic
enhancement of the membrane potential in comparison with
the uncharged dielectric membrane. The theoretical predic-
tions are based on the space-charge model, which was
extended to nanopores with a polarizable conductive sur-
face. These predictions are confirmed experimentally by
measuring the membrane potential in dielectric and con-
ductive nanoporous membranes using KCl and NaCl aque-
ous solutions. The enhancement effect becomes greater with
decreasing the electrolyte concentration and pore radius. A
high sensitivity of the membrane potential to the ratio of ion
diffusion coefficients is demonstrated. The described phe-
nomenonmay find applications in the precise determination
of ion mobilities, electrochemical and biosensing, as well as
the design of nanofluidic and bioelectronic devices.
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