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We quantify the emergent complexity of quantum states near quantum critical points on regular 1D
lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in
direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance
imaging measurements of the brain. Using matrix product state methods, we show that network density,
clustering, disparity, and Pearson’s correlation obtain the critical point for both quantum Ising and Bose-
Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase
transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
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Classical statistical physics has developed a powerful set
of tools for analyzing complex systems, chief among them
complex networks, in which connectivity and topology
predominate over other system features [1]. Complex
networks model systems as diverse as the brain and the
internet; however, up until now they have been obtained in
quantum systems by explicitly enforcing complex network
structure in their quantum connections [2–7], e.g., entan-
glement percolation on a complex network [4]. In contrast,
complexity measures on the brain observe emergent com-
plexity arising out of, e.g., a regular array of EEG electro-
des placed on the scalp, via an adjacency matrix formed
from the classical mutual information calculated between
them [8]. We apply the quantum generalization of this
measure, an adjacency matrix of the quantum mutual
information calculated on quantum states [9], to well-
known quantum many-body models on regular 1D lattices,
such as the Ising model, as sketched in Fig. 1, and uncover
emergent quantum complexity that clearly identifies quan-
tum critical points (QCPs) [10,11]. Quantum mutual
information bounds two-point correlations from above
[12], measurable in a precise and tunable fashion in,
e.g., atom interferometry in 1D Bose gases [13], among
many other quantum simulator architectures. Using matrix
product state (MPS) computational methods [14–16], we
demonstrate rapid finite size-scaling for both transverse
Ising and Bose-Hubbard models, including Z2, mean field,
and Berzinskii-Kosterlitz-Thouless (BKT) quantum phase
transitions.
As we move toward more and more complex quantum

systems in materials design and quantum simulators,
involving a hierarchy of scales, diverse interacting compo-
nents, and a structured environment, we expect to observe
long-lived dynamical features, fat-tailed distributions, and
other key identifiers of complexity [17–19]. Such systems
include quantum simulator technologies based on ultracold
atoms and molecules [20], trapped ions [21], and Rydberg
gases [22], as well as superconducting Josephson-junction

based nanoelectromechanical systems in which different
quantum subsystems form compound quantum machines
with both electrical and mechanical components [23]. A
key area in which we have taken a first step beyond phase
diagrams and ground state properties is nonequilibrium
quantum dynamics, where critical exponents and renorm-
alization group theory are only weakly applicable at best,
e.g., in the Kibble-Zurek mechanism, and are hard to find
any use for at all in far-from-equilibrium regimes. However,
at the most basic level we can first ask, are quantum
systems inherently complex? Must we impose complexity
on quantum systems to obtain it [2–7], or is there a regime
in which complexity naturally emerges, even in ground
states of regular lattice models? In this Letter we show that
emergent complexity can be well quantified in the simplest
of 1D lattice quantum simulator models in terms of
complexity measures around QCPs in direct analogy to
similar measurements on the brain; moreover, we establish
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FIG. 1. Sketch of the mutual information complex network. A
chain of L quantum bits for the transverse Ising model, the “fruit
fly” of quantum many body physics. (a) Links originating from
site 3 and site 6 for the mutual information complex network I ij,
corresponding to phases and critical point in (b). In this weighted
network, the height of the links in our sketch denotes their relative
strength; note descending vertical axes from left to right. The
entire complex network is far too dense to depict, so we show just
two representative sites. (b) Sketch of ferromagnetic phase,
critical point, and paramagnetic phase. The sinusoidal potential
corresponds to an optical lattice for ultracold atoms or molecules.
In the ferromagnetic limit the ground state is the Z2 symmetric
superposition between all spin up and all spin down, indicated by
two rows of arrows.
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a much-needed new set of tools for quantifying the
complexity of far-from-equilibrium quantum dynamics.
Quantum phase transitions are often characterized by

quantum averages over physical observables such as two-
point correlators. For example, the transverse Ising model
(TIM) consists of a chain of qubits with nearest neighbor
z-z coupling J and a transverse field g. For large g, spins are
not correlated in the z direction, while for small g the spins
tend to align or antialign, depending on the sign of J. The
quantum phase transition between large g (paramagnetic)
and small g (ferro- or antiferromagnetic) at the QCP gc ¼ 1
is evidenced by a change in the long-range behavior of the

two-point correlator gð2Þij ¼ hσ̂zi σ̂zji − hσ̂zi ihσ̂zji, where i, j
are sites on a lattice and σ̂z are measurements of spin in the
z direction; alternate measures include the von Neumann
entropy and concurrence [24]. The mutual information I ij

is bounded from below by gð2Þij , and indeed by any possible
two-point correlator in the model [12]. In general, for
quantum simulator technologies we obtain Hamiltonians
for which we do not know a priori what the right correlator
is or indeed if there is a quantum phase transition at all.
Thus, mutual information provides a much more general
tool to identify such quantum phase transitions than any
particular physical correlator.
To establish the usefulness of mutual information com-

plex networks, we consider both the TIM and the Bose-
Hubbard model (BHM). The BHM balances particle
tunneling J against on-site particle interaction U, with
the filling factor controlled by the chemical potential μ;
thus it has a richer phase diagram than the TIM, and
exhibits both mean field transitions from Mott insulators to
a superfluid phase as well as BKT crossovers at commen-
surate filling. We emphasize that both these models are
studied heavily in quantum simulators experimentally and
theoretically [20,21,25–27].
Quantum many-body Hamiltonians and mutual infor-

mation.—The 1D TIM takes the form

ĤI ¼ −J
XL−1

i¼1

σ̂zi σ̂
z
iþ1 − Jg

XL

i¼1

σ̂xi ; ð1Þ

where ½σ̂αj ; σ̂βk� ¼ 2iδjkϵαβγσ̂
γ
k. The 1D BHM takes the form

ĤB ¼−J
XL−1

i¼1

ðb̂†i b̂iþ1þH:c:ÞþU
2

XL

i¼1

n̂iðn̂i−1Þ−μ
XL

i¼1

n̂i;

ð2Þ

where ½b̂i; b̂†j � ¼ δij are bosonic annihilation and creation

operators and n̂i ¼ b̂†i b̂i. Both the TIM and BHM are
standard workhorses of quantum many-body lattice
physics [11]. The quantum mutual information
I ij ≡ 1

2
ðSi þ Sj − SijÞ, with I ii ≡ 0, is constructed from

the one and two point von Neumann entropies

Si ¼ −Trðρ̂i logd ρ̂iÞ, Sij ¼ −Trðρ̂ij logd ρ̂ijÞ, with reduced
density operators defined in terms of the partial trace as
ρ̂i ¼ Tr

k≠i
ρ̂ and ρ̂ij ¼ Tr

k≠i;j
ρ̂. We take d ¼ 2 for the TIM

(qubits) and d ¼ nmax þ 1 for the BHM, since particles can
pile up on site in the latter, with nmax ¼ 4, a truncation
parameter.
Complex network measures.—We use weighted gener-

alizations of standard measures based on unweighted
adjacency matrices [1]; a formal justification for and
interpretation of this generalization procedure can be found
in Ref. [28]. A primitive measure of a node’s importance is
the sum of the weights connecting it to other nodes in the
network, si ≡P

L
j¼1 I ij, where, si is called the strength of

node i. The disparity Yi of a node i in a network with L
nodes is defined as a function over weighted connections to
its neighbors,

Yi ≡ 1

ðsiÞ2
XL

j¼1

ðI ijÞ2 ¼
P

L
j¼1 ðI ijÞ2

ðPL
j¼1 I ijÞ2

: ð3Þ

Observe that if the mutual information between lattice sites
adopts a constant value I ij ¼ a, that Yi ¼ a2ðL − 1Þ=
a2ðL − 1Þ2 ¼ 1=ðL − 1Þ, so that if a node has relatively
uniform weights across its neighbors the disparity between
nodes will be approximately 1=ðL − 1Þ. On the other hand,
if a particular I ij takes on a dominant value b, then
Yi ≈ b2=b2 ¼ 1. The average disparity over all nodes in
the network is Y ≡ ð1=LÞPL

i¼1 Yi. The clustering coef-
ficient C is 3 times the ratio of triangles (three mutually
connected vertices) to connected triples in an unweighted
network. In our weighted network,

C≡ TrðI3ÞP
L
j≠i

P
L
i¼1½I2�ij

: ð4Þ

The density D is the average fraction of the ðL
2
Þ links that

are present in the network:

D≡ 1

LðL − 1Þ
XL

i¼1

si: ð5Þ

As the number of nodes in an unweighted network is allowed
to approach infinity a network is said to be sparse if D → 0,
and dense ifD > 0 as the number of nodes in the network L
approaches infinity [1]. Finally, a technique for assessing the
similarity between two nodes i, j in a network is to compute
the Pearson correlation coefficient between them,

rij ≡
P

L
k¼1 ðI ik − hI iiÞðI jk − hI jiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

L
k¼1 ðI ik − hI iiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
L
k¼1 ðI jk − hI jiÞ2

q ; ð6Þ

with hI ii the average of I ij over j. rij is treating link weight
as a random variable; the numerator of Eq. (6) is the
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covariance of the weights of node i with the weights of node
j, while the denominator is the standard deviation in the
weights of node i multiplied by the standard deviation in
the weights of node j. To restrict our study we focus on the
Pearson correlation coefficient between the middle two sites
of the lattice. These two nodes are spatially close to each
other and far from boundaries, making them the most
similar nodes in the network whose weights of connection
are not strongly modified by boundary conditions; we thus
choose R≡ rðL=2Þ;ðL=2Þþ1.
Numerical techniques.—We obtain our data with our

widely used MPS open source code [16], a well-established
algorithm [14]. The essence of the approach is data
compression of a quantum many-body state onto a classical
computer, using singular value decomposition. The key
convergence parameter is the bond dimension χ, limiting
the growth of spatial entanglement as defined by the
truncated Schmidt number of the reduced density matrix
[9]. We use bond dimensions of up to several hundred,
which are adequate to establish the usefulness of our
complex network measures to pin down QCPs, as is our
aim (for extremely high accuracy calculations with bond
dimensions in the thousands, see Ref. [29]). Our simu-
lations are converged up to a variance tolerance of
10−10ð10−8Þ in the TIM (BHM). Mesoscopic corrections
have been explored for the BHM in detail in our previous
work [30].
Emergence of critical points.—Figure 2 shows a finite-

size scaling study of complex network measures on the

mutual information calculated with MPS code for these two
models, for 1D lattices with ranges appropriate for experi-
ments. Although we studied twelve network measures, we
selected the four most relevant for brevity: density of links
D, clustering coefficient C, average disparity Y, and
Pearson correlation between middle lattice sites R; we also
include other measures such as bond entropy SB, negativity
N , correlation length ξ, and condensate depletion D for
comparison purposes. All four network measures are
clearly useful to identify phase transitions in the TIM
and highlight different physical aspects. D is high in the
TIM ferromagnetic and BHM superfluid phases where the
nodes in the lattice are strongly connected, as sketched in
Fig. 1(a). However, the quantum phase transition at the
QCP is sharp at L → ∞ for the TIM, where there is a Z2

transition and L≃ 100 suffices, whereas in the BHM we
expect to observe a BKT crossover, which converges only
for very large L≃ 1000 [31], and is most apparent in the
first and second derivative of D. The TIM paramagnetic
and BHM Mott insulating phases are only sparsely con-
nected.C follows a similar behavior except that for both the
TIM and BHM it develops a local minimum near the QCP.
This reflects the fact that the average number of connected
triples is temporarily growing faster the control parameter
(g for the TIM, J=U for the BHM) for the average number
of triangles. Physically this could be because the length
scale of correlations has become as long as one lattice
spacing but not two, resulting in a period of rapid increase
in mutual information between nearest neighbors relative to
second nearest neighbors. In strong contrast to D and C, in
the TIM ferromagnetic and BHM superfluid phases Y
asymptotically approaches ð1=L − 1Þ. In the TIM para-
magnetic and BHM Mott insulating phases, where corre-
lations decay exponentially, Y grows as spins become more
tightly bound to their nearest neighbor relative to other
qubits in the complex network. Finally, R has a completely
different behavior, and clearly develops a cusp at the TIM
QCP. Qualitatively, R is low in both the ferromagnetic and
paramagnetic phases due to the relative homogeneity of
correlations when g ≪ 1 and when g≳ 2. In contrast, near
criticality the weights display an approximately linear
relationship.
Finite-size scaling.—Figure 2(b) shows the BKT cross-

over transition for commensurate filling (average one
particle per lattice site). However, a mean field phase
transition at noncommensurate filling also appears in the
BHM. As the Mott insulating phase is gapped (meaning the
energy to create an excitation, even in the L → ∞ limit, is
nonzero), the usual way to find the boundaries of the Mott
lobe (the region encompassing the Mott insulating phase) is
to compute the energy required to add a particle or a hole to
the insulator: the chemical potentials μpc ¼ Ep − E0 and
−μhc ¼ Eh − E0, respectively [31]. Then one uses finite-
size scaling to extrapolate μpc and μhc in L−1 to estimate the
phase boundary. Instead of working with chemical

(a) (b)

FIG. 2. Complex network measures on the mutual information.
(a) Transverse quantum Ising model describing quantum spins
(qubits). The clustering coefficient C and densityD serve as order
parameters for the ferromagnetic phase. The average disparity Y
identifies the short range correlations of the paramagnetic ground
state. The Pearson correlation coefficient R develops a cusp near
the critical point gc ¼ 1, identifying a structured nature to
correlations near criticality. (b) Bose-Hubbard model describing
massive particles for commensurate lattice filling, with BKT
crossover occurring in the limit L → ∞ at a ratio of tunneling J to
interaction U of ðJ=UÞBKT ¼ 0.305; for smaller system sizes, the
effective critical point [30] can be as small as ðJ=UÞBKT ≃ 0.2.
The density and clustering coefficient grow as spatial correlations
develop in the superfluid phase. The average disparity is high in
the Mott insulator phase where correlations are short-ranged.
Critical and crossover behavior is most evident in derivatives of
these measures; see Fig. 3 and Table I. Note: all network
measures have been self-normalized to unity for display on a
single plot.
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potentials, in Fig. 3(a) we use Y to obtain the first Mott lobe
with both mean field and BKT crossover, shown here for
L ¼ 40. Figures 3(b) and 3(c) show finite size scaling in L
towards the BKT crossover and the mean field phase
transitions indicated in Fig. 3(a). Minimization of D and
tracking the central extrema of C, which goes from a
global minimum to a local maximum, result in similar
estimates to Y. The BKT transition has been estimated by
many methods in the past, including from the correlator
hb̂†i b̂iþri ∼ r−K=2, taking advantage of the fact that at the
QCP K ¼ 1=2 [31], predicting ðJ=UÞBKT ¼ 0.29� 0.01;
more recent results estimate ðJ=UÞBKT ¼ 0.305 [29,32].
By fitting curves like those shown in Figs. 3(b) and 3(c)
(BHM) and Fig. 3(d) (TIM), to power laws of the form
ðJ=UÞcðLÞ ¼ ðJ=UÞc þ AL−1=ν0 (BHM) and gcðLÞ ¼ gc þ
AL−1=ν (TIM) we perform quantitative analysis of QCPs
and provide errors due to the fitting procedure (see
Supplemental Material [33] for a detailed explanation) in
Table I. In particular, examining this data we observe that
by measuring the complex network structure present in the
quantum mutual information, we can estimate the QCP of
the TIM to within 0.01% of its known value, that the Mott-
insulator phase boundary can be reliably estimated by
extremization of network quantities, and that the BKT
transition at the tip of the Mott lobe, famously difficult to
pin down without going to extremely large systems with
thousands of sites with high accuracy, is estimated to within
5.3% using systems up to 260 sites via the max slope of D.

(a)

(c) (d)

(b)

FIG. 3. Finite-size scaling for the Bose-Hubbard model and
transverse Ising model. (a) BHM quantum phase diagram for
fixed L ¼ 40 showing superfluid and Mott Insulating phases with
mean field phase transition along the Mott lobe and a BKT
transition at its tip. (b) BHM BKT transition at unit filling.
Scaling in 1=L places the critical point at ðJ=UÞBKT ¼ 0.314
(clustering C, dashed red), 0.281 (average disparity Y, solid blue),
and 0.289 (densityD, black dashed), respectively. Compare to the
best value to date [29,32] of 0.305, or the Luttinger liquid
prediction of 0.328. (c) Approaching the BHM mean field
superfluid to Mott insulator transition for fixed ðJ=UÞ ¼ 0.1.
Maximum disparity, central extrema in clustering, and minimum
density scale towards the commensurate-incommensurate phase
boundary and lie on top of each other. (d) Scaling of multiple
measures and their derivatives for the TIM; see also Table I.

TABLE I. Quantitative finite-size scaling analysis of quantum critical points. Estimates for the critical point gc and ðJ=UÞBKT and
scaling exponents ν; ν0 for the transverse Ising and Bose Hubbard models, respectively, based on four complex network measures on the
mutual information with standard quantum measures included for comparison. We include first and second derivatives (F.D., S.D.) since
bare measures are often insufficient, an effect well known from one-point entanglement measures like the von Neumann entropy. We
also note two other features: the local minimum in the clustering coefficient C (L.M.), and an intriguing point where normalized average
disparity is equal to normalized density ( ~Y ¼ ~D). Entries are left blank when the measure fails to identify the critical point. Our complex
network measures clearly perform as well or better than standard measures, particularly for the still improving estimates for the BHM
BKT point [29].

Measure gc ν ðJ=UÞBKT ν0

Density D F.D. 0.998� 0.005 0.962� 0.245 0.289� 0.067 2.980� 6.642
Density D S.D. 1.005� 0.011 1.549� 1.489 0.287� 0.055 2.706� 2.815
Disparity Y F.D. 1.003� 0.004 0.853� 0.618
Disparity Y S.D. 0.999� 0.005 0.972� 0.597 0.281� 0.059 2.809� 4.529
Clustering C L.M. 1.000� 0.001 0.300� 0.393 0.281� 0.012 0.949� 0.471
Clustering C F.D. 0.997� 0.005 0.954� 0.237 0.314� 0.018 1.538� 1.343
Clustering C S.D. 1.003� 0.008 1.302� 1.013 0.281� 0.041 2.325� 3.172
Pearson R F.D. 0.998� 0.005 0.988� 0.232
Pearson R S.D. 1.005� 0.012 1.517� 1.320 0.300� 0.111 3.842� 6.480
~Y ¼ ~D L.M. 1.001� 0.002 0.539� 0.473 0.299� 0.148 4.441� 8.531
Bond Ent. SB L.M. 1.000� 0.005 0.952� 0.146
Bond Ent. SB F.D. 0.283� 0.047 2.497� 2.714
Negativity N L.M. 1.000� 0.005 0.987� 0.207
Negativity N F.D. 0.289� 0.069 3.030� 6.429
Corr. Len. ξ F.D. 1.001� 0.005 0.974� 0.888
Depletion D F.D. 0.286� 0.054 2.680� 3.533
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Conclusions.—We have shown that quantum complexity
already emerges in a clearly quantifiable way in quantum
states near quantum phase transitions in regular 1D lattices.
In direct analogy to the complexity of electroencephalo-
gram or functional magnetic resonance imaging measure-
ments on the brain, our measures are built on taking the
quantum mutual information as a weighted adjacency
matrix, and reliably estimate quantum critical points for
well-known quantum-many body models, in particular, the
transverse Ising and Bose-Hubbard models. These models
include three classes of phase transitions, Z2, mean field
superfluid to Mott insulator, and a BKT crossover; in each
case we obtain rapidly converging accuracy for critical
point values, a demonstrable improvement in finite-size
scaling over all other known methods including, e.g., high
order perturbation theory. To be specific, the improvements
come from the fact that the complex network measures do
not require a priori knowledge while retrieving important
information about the quantum correlations. Our work sets
the stage for application of a new set of quantum measures
to quantify complexity of quantum systems where tradi-
tional correlation measures are at best weakly applicable. In
future work we will apply our new methods to far-from-
equilibrium dynamics in such systems, for instance,
quantum cellular automata [18,19,34,35] and quantum
degenerate ultracold molecules with a multiscale hierarchy
of internal and external degrees of freedom [36].
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