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A concentration gradient along a fluid-fluid interface can cause flow. On a microscopic level, this so-
called Marangoni effect can be viewed as being caused by a gradient in the pressures acting on the fluid
elements or as the chemical-potential gradients acting on the excess densities of different species at the
interface. If the interface thickness can be ignored, all approaches should result in the same flow profile
away from the interface. However, on a more microscopic scale, the different expressions result in different
flow profiles, only one of which can be correct. Here we compare the results of direct nonequilibrium
molecular dynamics simulations with the flows that are generated by pressure and chemical-potential
gradients. We find that the approach based on the chemical-potential gradients agrees with the direct
simulations, whereas the calculations based on the pressure gradients do not.

DOI: 10.1103/PhysRevLett.119.224502

Fluid flows can be generated by variations of temperature
or solute concentration parallel to a fluid-fluid interface. This
phenomenon is known as the Marangoni effect (see, e.g.,
Refs. [1,2]). The “continuum” explanation for this effect is
that the gradients in temperature or concentration result in
gradients in the surface tension,which then induce shear flow
[3–9]. For some applications, itwouldbe interesting to have a
higher-resolution description of Marangoni flows. The
reason is that the local shear in Marangoni flows can be
quite large and could become important for nanofluidics
[10–13].Moreover, thepreciseMarangoni flowprofilemight
affect the orientation and even conformation of molecules
such as proteins near an interface. At present, such micro-
scopic insights in Marangoni flows are lacking.
In this Letter, we study the flow induced in a flat liquid-

liquid interface by the concentration gradient of a neutral
solute (i.e., the “solutal”Marangoni effect). We first review
the various (pressure- or chemical-potential-based) expres-
sions for the force acting on molecules near the interface.
We then perform molecular dynamics (MD) simulations to
compare the flows generated by these forces with the
results of direct nonequilibrium simulations with explicitly
imposed concentration gradients.
Let us first consider two immiscible liquids at temperature

T that meet at a flat liquid-liquid interface at zðx; yÞ ¼ 0.
When a concentration gradient is applied along x, flow
occurs due to a surface-tension gradient. The surface tension
γ can be related to the integral of the difference between the
longitudinal and transverse pressures near the interface,

γ ¼
Z þ∞

−∞
½pzzðzÞ − pxxðzÞ�dz; ð1Þ

where pzzðzÞ and pxxðzÞ are the normal and transverse
components of the pressure tensor at z, respectively [14–16].
Below, we will discuss different definitions of the pressure
tensor. However, as was pointed out by Schofield and
Henderson [17], the integral in Eq. (1) does not depend
on the choice of the expression for the pressure tensor.
Nevertheless, the microscopic flow near an interface is
expected to depend on the local gradients of the pressure
rather than the gradients of the integral of the pressure tensor.
This is important because, close to the interface, the viscosity
of the liquid need not be constant, hence,making a difference
where the forces act.
The most intuitive method to obtain the Marangoni force

acting on fluid molecules near the interface is to calculate
the force per unit volume on a small volume element
from the pressure gradient [∂pxxðzÞ=∂x] and then obtain
the force per particle by dividing the force per volume by
the local number density. We nowmake the assumption that
pxxðzÞ depends on x only through its dependence on the
spatial variation in the bulk concentration ρC (or, equiv-
alently, the chemical potential) of the species subject to a
concentration gradient:

fVðzÞ ¼ −
∂pxxðzÞ
∂ρC

∂ρC
∂x : ð2Þ

We note that the condition for mechanical equilibrium in
the bulk implies, via the Gibbs-Duhem relation, that a
concentration gradient in a solute also causes a gradient in
the concentration of the solvent. However, these other
gradients are not independent, and, hence, we will treat the
solute concentration gradient as the independent variable.

PRL 119, 224502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 DECEMBER 2017

0031-9007=17=119(22)=224502(5) 224502-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.224502
https://doi.org/10.1103/PhysRevLett.119.224502
https://doi.org/10.1103/PhysRevLett.119.224502
https://doi.org/10.1103/PhysRevLett.119.224502


The general expression for the local pressure tensor at
position r is given by

pabðrÞ ¼ ρðrÞkBTδab þ
1

V

�X
i

X
j>i

raijf
b
ijξ

abðr; ri; rjÞ
�

ð3Þ
under the condition of

R
drξabðr; ri; rjÞ ¼ 1 [17–19]. Here,

a and b denote the Cartesian components of the pressure
tensor, ρðrÞ is the local density, δab denotes the Kronecker
delta, rij and fij represent the distance and force between
particles i and j, and ξabðr; ri; rjÞ is the fraction of the
intermolecular virial from a given pair of molecules at ri
and rj to be assigned to position r. As was argued in
Ref. [17], there is no unambiguous way to assign the
intermolecular virial in the system. All definitions of the
pressure tensor that differ only by a function that is
divergence-free are acceptable. There are, in fact, several
widely used definitions for the local pressure tensor
[15,20]. For example, for a given pair of molecules, the
virial definition specifies that half of the contribution to
the stress resides in each elemental volume containing the
molecule [21], while the Irving-Kirkwood definition spec-
ifies that the contribution is evenly distributed along a line
connecting the two molecules [18]. These two definitions
lead to the same value of the surface tension but to very
different results for the pressure-tensor distribution in the
interface [22,23].
Gibbs was the first to give a consistent thermodynamic

description of the surface tension [24]. In particular, Gibbs
related the variation of the surface tension with the chemical
potential of species i to the excess of that species at the
interface. For an n-component system: dγ ¼ −

P
n
i¼1 Γidμi,

with Γi the surface excess and dμi the chemical-potential
variation due to the concentration gradient. We assume that
∂μi=∂x is independent of z (fast equilibration normal to the
interface). Because Γi ≡ R∞

−∞ (ρiðz; xÞ − ρbulki ðxÞ)dz, the
surface-tension gradient along x is

∂γ
∂x ¼

Z
∞

−∞

Xn
i¼1

(ρiðz; xÞ − ρbulki ðxÞ)
�
−
∂μi
∂x

�
dz: ð4Þ

This suggests that the local force acting on a volume element
at r is given by −

P
n
i¼1 ΓiðrÞð−∂μi=∂xÞ. Such a relation

also follows from the Gibbs-Duhem equation Vdp ¼P
n
i¼1Nidμi with Ni the number of particles of component

i in volume V and p the pressure. Let us denote the number
density of component i in the mixture by ρi. Then
dp ¼ P

n
i¼1 ρidμi. A concentration gradient of component

i along x will lead to a chemical-potential gradient ∂μi=∂x.
As the pressure remains constant in the bulk, we must
have 0 ¼ P

n
i¼1 ρ

bulk
i ðxÞð∂μi=∂xÞ. At a position z near the

interface, a pressure gradient remains giving a force per unit
volume

fVðzÞ ¼
�
−
∂pxxðz; xÞ

∂x
�

¼
Xn
i¼1

(ρiðz; xÞ − ρbulki ðxÞ)
�
−
∂μi
∂x

�
: ð5Þ

We can interpret ð−∂μi=∂xÞ as the force per atom acting on
the particles of component i. This expression is convenient
because the imposed chemical-potential gradients are con-
stant throughout the system. In the bulk, the composition is
such that the forces balance (because the bulk pressure
equilibrates rapidly). Upon approaching the interface,
the concentration of different components may change,
leading to nonzero net forces. In other words, particles
of a given species experience the same force regardless of
their distance from the interface. The force acting on species
i is then

fi ¼
�
−
∂μbulki

∂x
�

¼
�
−
∂μbulki

∂ρi
�

P
∇ρi: ð6Þ

We now have two alternative expressions [Eqs. (2) and (5)]
for the surface force arising in the solutal Marangoni effect.
Both satisfy that the integrated surface force is equal to
the surface-tension gradient, but otherwise they are not
obviously identical.
To test which, if any, of these microscopic expressions is

correct, we performed MD simulations on a simple model
system. We consider a fluid mixture composed of one
solute (C) and two immiscible solvents (A and B, respec-
tively), with two liquid-liquid interfaces, as shown in Fig. 1.
All particles are assumed to have the same mass m and
molecular radius σ. They interact through Lennard-Jones
potentials UαβðrÞ¼4ϵαβ½ðσ=rÞ12−ðσ=rÞ6� (α;β∈fA;B;Cg)
with interaction energy ϵαβ. All interactions are truncated
and shifted at 4σ. For simplicity, we focus on ideal solu-
tions composed of identical solvent and solute particles and
take ϵAA ¼ ϵBB ¼ ϵCC ¼ ϵAC ¼ ϵBC ≡ 1.0ϵ (which defines

FIG. 1. (a) Simulation box used in the equilibrium MD
simulations to compute the forces using Eqs. (6) and (7), and
in the nonequilibrium MD simulations with explicit forces to
measure flow profiles generated by these forces. (b) Simulation
box used in the direct nonequilibrium MD simulations with
explicitly imposed concentration gradients. The red and blue
particles represent the two solvents (A and B), the green particles
represent the solute (C), and the black particles represent the
solid walls.
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our unit of energy). However,A andB tend to demix because
they have a weaker attraction: ϵAB ¼ 0.3ϵ. Throughout this
Letter, we use reduced units with σ, ϵ, and m denoting the
units of length, energy, and mass, respectively.
All simulations were carried out using LAMMPS [25] in an

isothermal, isobaric (NpzzT) ensemble. Periodic boundary
conditions were imposed in all directions. The temperature
and normal pressure during the simulationsweremaintained
at T ¼ 0.846 andpex ¼ 0.012. The relaxation parameter for
the Nosé-Hoover thermostat is set to 0.1 and that for the
pressure barostat is 1. The velocity-Verlet algorithm with a
time step of 0.001 is used for the integration of equations of
motion. All simulations were run for ð2 × 108Þ − ð4 × 108Þ
steps to obtain good statistics.
The computation of ∂pxxðzÞ=∂ρC requires several equi-

librium simulations at a constant bulk concentration. These
can be carried out in a relatively small simulation box
shown in Fig. 1(a). The box dimensions were Lx ¼ 16.44
and Ly ¼ 9.86, hLzi ¼ 42.4 (Lz fluctuates and depends
very weakly on the solute concentration). The system
contained 5040 particles, approximately equally distributed
between the A phase and the B phase. To compute the
composition dependence of pxxðzÞ, we performed simu-
lations where we varied the concentration of the solute C,
while keeping the total number of particles fixed.
From the numerical estimate of ∂pxxðzÞ=∂ρC, we

computed the corresponding force at ρC ¼ 0.02 and
ΔρC ¼ 0.01 using

fVðzÞ ¼ −
∂pxxðzÞ
∂ρC

∂ρC
∂x

≈ −
pxx
ρCþΔρCðzÞ − pxx

ρC−ΔρCðzÞ
2ΔρC

∇ρC: ð7Þ

We verified that our estimate for the pressure gradient did
not depend on our choice of ΔρC. Subsequently, we
converted the force per unit volume to a force per particle
by dividing by the total number density at height z, ρðzÞ.
These per-particle forces were then applied in a non-
equilibrium simulation with solute density ρC in the box,
as shown in Fig. 1(a), to measure the corresponding flow
profile at ∇ρC.
Starting from Eq. (6), we can compute the forces that

would result from the gradient of the chemical potentials.
These per-atom forces were applied to the solute and the
solvent particles. During all these simulations with explicit
forces [Fig. 1(a)], a constant force is applied to all fluid
particles to balance the surface force to ensure that there
is no center-of-mass flow. To measure the local velocity,
the simulation box was divided into a series of slabs of
thickness dz ¼ 0.05 parallel to the interface. The local
velocity is computed as the time-averaged center-of-mass
velocity of all fluid particles in each slab.
To compare, we performed direct nonequilibrium sim-

ulations where a concentration gradient was explicitly

imposed. Here, “direct” is used to refer to such simulations
that differ from above nonequilibrium simulations with
explicit forces. Figure 1(b) shows the simulation box in
which the fluid mixture has a constant bulk concentration
gradient along x. The box size Lx ¼ 59.19 and Ly ¼ 9.86,
and hLzi ¼ 42.4. The system contained 18144 particles,
approximately equally distributed between the A phase and
the B phase. Direct nonequilibrium simulations were
carried out to measure the flow profile at a given value
of ∇ρC. In this case, we employed a box that was
terminated on both ends by hard walls perpendicular to
the x direction. These walls were composed of frozen fluid
particles that interact with the fluid via Lennard-Jones
potentials where ϵWA ¼ ϵWB ¼ ϵWC ¼ 1.0ϵ. Next to each
wall, we defined a “source” region with a width of 8.
During the simulations, every 500 steps, the types of the
fluid particles in the bulk of these source regions are reset to
maintain constant bulk concentrations on the two sides and
a steady gradient along x. In the simulation, flow in the
interface set in motion by the surface force is accompanied
by a bulk backflow caused by the presence of the walls.
Moreover, the fluid states are still close to equilibrium, and
the equilibration of each species along z is very fast (see the
Supplemental Material S1 [26]).
In order to calculate the surface force at ρC ∼ 0.02

via Eq. (2), we computed the pressure-tensor profile at
ρC ∼ 0.01 and ρC ∼ 0.03. Figure 2 shows the pressure
profiles along z near a liquid-liquid interface at ρC ∼ 0.01
using the Irving-Kirkwood and virial definitions. In the bulk
where the fluid is homogeneous, both definitions lead to
the same value since pzz ¼ pxx ¼ pex ¼ 0.012. Upon
approaching the interface, pzz from the Irving-Kirkwood
definition is (necessarily) the same as the bulk pressure,
reflecting mechanical equilibrium along z [Fig. 2(a)]. As is
well known, the virial expression for pzz is not constant
[Fig. 2(b)]. We verified that the two expressions for the
pressure tensor did yield the same value of surface tension.
We find [from Eq. (1)] that the surface tension is 1.14 at
ρC ∼ 0.01 and 1.05 at ρC ∼ 0.03.
The chemical potential for component i is given by

μi ¼ μ0i þ kBT ln ρbulki þ μexci , with kB the Boltzmann
constant, μ0i denotes a (constant) reference value, and
μexci denotes the excess chemical potential due to intermo-
lecular interactions. Because the bulk solutions are ideal,
μexci does not depend on the concentration of C. Thus, at
ρC ∼ 0.02, with ρbulkA ¼ ρbulkB ¼ 0.742 and ρbulkC ¼ 0.019
[Fig. S1(b) [26]], if ∇ρC ¼ 1.0, we obtain fA ¼ fB ¼ 1.14
and fC ¼ −44.53 from Eq. (5) (i.e., we do, indeed, have
force balance in the bulk).
We are now in a position to compare the force profiles

that follow from the pressure-tensor gradients with
those that follow from the chemical-potential gradient.
Figure 2(c) shows the profiles of the volume force at
ρC ∼ 0.02 with ∇ρC ¼ 1.0. As can be seen from the figure,
the two expressions for the surface force [Eqs. (2) and (5)]
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produce significantly different results at the interface. Not
surprisingly, the forces calculated from the chemical
potentials [Eq. (5)] are concentrated where there is an
excess of solute [Fig. S1(b) [26]]. However, the forces
calculated by using the local pressure tensors computed via
the Irving-Kirkwood and virial definitions [Eq. (2)] extend
over larger distances and vary in sign. The Irving-
Kirkwood and virial definitions lead to force profiles that
are very similar. We verified that the integrated Marangoni
force is effectively the same for all methods used: −4.7�
0.1 for the chemical potential, −4.8� 0.1 for the virial, and
−4.8� 0.1 for the Irving-Kirkwood, respectively. More-
over, these values agree with the surface-tension gradient
calculated from the values of surface tension at different
concentrations, which is −4.8� 0.1 at ρC ∼ 0.02 with
∇ρC ¼ 1.0 [calculated via ð∂γ=∂ρCÞ∇ρC].
The fact that pressure-tensor and chemical-potential

routes lead to different force profiles implies that they
would result in different flow profiles. At most, one can be
correct. To test this, we applied the force profiles that we
computed to the fluid mixture at ρC ∼ 0.02 and measured
the flow profile as a function of z for fixed∇ρC. The Irving-
Kirkwood and virial definitions lead to very similar results
for the surface force, and, hence, we show only the virial
flow profile. Figure 3(a) shows the predicted velocity
profiles at ∇ρC ¼ 0.001. We see that although the velocity
profiles are very similar in the bulk, they are significantly
different near the interface. For the sake of comparison, the
velocity profile obtained in a direct nonequilibrium MD
simulation with an imposed concentration gradient of
∇ρC ¼ 0.001 was determined in a region with −10 < x <
10 (x ¼ 0 at the center of the box). The result is shown in
Fig. 3(b). We see that the velocity profile that follows from
the direct simulation differs markedly from the one
obtained from the pressure-tensor gradients. However, it
agrees quite well with the predictions based on the
chemical-potential gradient calculations. The same results
were found at ∇ρC ¼ 0.0005 (Fig. S2 [26]).
This finding is interesting because it indicates that the

use of local pressure-tensor gradients leads to incorrect
prediction of the Marangoni flow profile near the interface,
even though the velocity in the bulk is still reliable. The
latter finding is consistent with our previous work [27],

which showed that bulk thermo-osmotic flow computed via
local pressure gradients agrees well with the flow predicted
by its reciprocal mechanocaloric coefficient. Our results
suggest that the chemical-potential route should be the
preferred route to compute microscopic Marangoni flows.
On the other hand, pressure tensors are extremely useful

in the description of bulk hydrodynamic phenomena, and
the present microscopic expressions for the stress are
widely used in molecular simulations, both for the study
of bulk properties (e.g., elastic stresses [28,29]) and for the
computation of the surface tension of fluids [22,23].
However, the failure of the pressure tensor revealed here
suggests that they should clearly be handled with care on

FIG. 2. (a), (b) The pressure profiles along z near one interface at z ¼ 10.6 calculated by the Irving-Kirkwood definition (a) and virial
definition (b) at ρC ∼ 0.01. The black dashed line shows the external pressure of pex ¼ 0.012. (c) The volume force profiles per unit
concentration gradient along z near one interface at z ¼ 10.6 calculated by different methods at ρC ∼ 0.02. The horizontal dashed line
corresponds to the force of zero.

FIG. 3. The velocity profiles along z from different approaches
at ∇ρC ¼ 0.0010: (a) pressure-tensor and chemical-potential
routes, (b) direct-nonequilibrium and chemical-potential routes.
The horizontal dashed line corresponds to the velocity of zero.
Here, “virial” represents the velocity profile from the nonequili-
brium simulation with explicitly imposed forces, and the forces
are calculated from the virial pressure gradient [Eq. (7)]. “Chemi-
cal potential” represents the velocity profile from the nonequili-
brium simulation with explicit forces, but the forces are calculated
from the chemical-potential gradient [Eq. (6)], while “direct
noneq” represents the velocity profile from the direct nonequili-
brium simulation with explicitly imposed concentration gradient.
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the microscopic scale. In their original hydrodynamic for-
mulation of the stress tensor [18], Irving and Kirkwood note
that a boundary or interface can cause the stress to depend
on gradients of the pairwise atomic density, which can be
neglected in the standard Irving-Kirkwood expression for
fluids in the absence of gradients. The present work provides
evidence that the problem hinted at by Irving and Kirkwood
indeed becomes important in a gradient near an interface, as
the potential part of the stress tensor then depends not only
on the distance of two points between which a force acts but
also on the absolute coordinates of these points. Yet, the fact
that both the Irving-Kirkwood and virial expressions for the
microscopic stress yield the same incorrect answer, strongly
suggests that minor tweaks to either will not be enough to fix
the problem [17].Wehope that ourworkwill inspire others to
think about other solutions and possibly arrive at a formu-
lation that allows one to calculate the Marangoni flow from
the knowledge of the gradient of another, as yet unknown,
microscopic function.
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