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We demonstrate both theoretically and experimentally that the harmonics from abruptly autofocusing
ring-Airy beams present a surprising property: They preserve the phase distribution of the fundamental
beam. Consequently, this “phase memory” imparts to the harmonics the abrupt autofocusing behavior,
while, under certain conditions, their foci coincide in space with the one of the fundamental. Experiments
agree well with our theoretical estimates and detailed numerical calculations. Our findings open the way for
the use of such beams and their harmonics in strong field science.
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Introduction.—The preservation of a wave packet phase,
after the action of nonlinear or other phase-deteriorating
effects, is often referred to as “phase memory” [1–3]. Phase
memory, in general, leads to a coherent wave packet
behavior [1], while its physical origin is quite diverse,
ranging from quantum-mechanical physical system con-
figurations [2,3] to optical wave packet distributions [1].
Optical wave packets that exhibit phase memory present
exciting applications in strong field physics, like in higher
harmonics and attosecond pulses [4].
Optical harmonics are generated by exploiting

strong field interactions in nonlinear optical media. An
intense pulsed beam of fundamental frequency ω with
an electric field amplitude Eðr; tÞ will modulate the
dielectric polarization density Pðr; tÞ of the medium.
This physical process can be described as [5] Pðr; tÞ ¼
ε0 χ

ð1ÞEωðr; tÞ þ ε0 χ
ð2ÞE2

ωðr; tÞ þ � � �, where ε0 is the vac-
uum permittivity and χð1Þ and χðpÞ ðp ¼ 2; 3;…Þ are,
respectively, the linear and the nonlinear optical suscep-
tibilities of the order of p. Each one of the nonlinear
polarization terms can be correlated to a harmonic field
Epðr; tÞ, of the order of p, with a phase and amplitude that
are, in general, different from that of the fundamental.
Phase memory in this case would be expressed as a
preservation of the spatial phase of the fundamental in
the harmonics and can be extremely beneficial when using
engineered optical wave packets [6–8] to tailor the har-
monic generation process. For example, since the spatial
phase controls the wave packet propagation, phase memory
would lead harmonics sharing the same propagation
properties as the fundamental.
Here we show that phase memory, during harmonic

generation, is an inherent property of a family of optical
wave packets whose distribution is described by the Airy
function [9]. This family includes the accelerating Airy
beams [10–12], as well as the cylindrically symmetric

ring-Airy wave packets [13,14]. The spatial phase distri-
bution of Airy beams leads to unique properties, including
propagation along parabolic trajectories [10,15,16],
bypassing obstacles, and self-healing [17,18]. Also, ring-
Airy beams exhibit abrupt autofocusing while experiencing
only a minor nonlinear focus shift as their power is
increased [19], making them ideal candidates for high-
intensity applications with a precise deposition of energy in
space [8,20]. Beside these exiting properties, we demon-
strate that phase memory preserves the abruptly autofocus-
ing behavior in the harmonics of ring-Airy wave packets,
while under certain conditions their foci coincide in space
with the one of the fundamental. We analytically show that
this behavior is further preserved under the action of a
converging lens for obtaining tighter focusing and higher
intensities. Experiments and detailed numerical simulations
of the second harmonic of ring-Airy beams validate our
theoretical analysis. Our results open the way for the use of
accelerating beams and their harmonics in a plethora of
nonlinear optics applications.
Theoretical analysis.—Since the generation of harmon-

ics involves powers of the field distribution, we will start
our analysis from the case of second harmonic generation.
The amplitude of a ring-Airy beam is described as

uωðrÞ ¼ u0AiðρÞeαρ; ð1Þ

where u0 is the amplitude, Aið·Þ is the Airy function,
ρ≡ ðr0 − rÞ=w, and r0, w, and α are, respectively, the
primary ring radius, width, and apodization parameters.
Without the loss of generality, the amplitude of the
generated second harmonic in a thin β-barium borate
(BBO) crystal is given by

u2ωðrÞ ∝ χð2ÞuωðrÞ2 ¼ χð2Þu20AiðρÞ2e2αρ; ð2Þ
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where χð2Þ is the nonlinear susceptibility. By using well-
known approximations of the Airy function [9], we reach
an analytical expression of the square of the Airy function
term that appears in Eq. (2) [21]:

AiðρÞ2 ≃ 2EðρÞ2 þ EðρÞAiðŜ · ρÞ≡ Aia2ðρÞ; ð3Þ
where EðρÞ≡ 1=½2 ffiffiffi

π
p

fðρÞ1=4�, Ŝ is a linear scaling oper-
ator Ŝ · ρ≡ 22=3ρþ π=ð8 × 21=3Þ, and f is an apodization
function [21]. Figure 1 shows a comparison of AiðρÞ2 to the
approximation Aia2ðρÞ.
Using the approximation of Eq. (3), we can write for the

second harmonic

u2ωðr; 0Þ ∝ 2χð2Þu20EðρÞ2 þ χð2Þu20Aiðρ0ÞEðρÞe2αρ; ð4Þ
where ρ0≡ðr00−rÞ=w0, r00 ¼ r0 þ πw=16, and w0 ¼ 2−2=3w.
Equation (4) shows clearly that the amplitude of the
generated second harmonic is composed by two terms: a
smooth pedestal that does not exhibit any autofocusing
behavior and a ring-Airy term that is strongly apodized,
carrying ∼25% of the total energy. The second term is a
clear demonstration of phase memory, which will result in
abrupt autofocusing of the second harmonic.
One can calculate the focus position of the fundamental,

using the 1D Airy analytical formulas [11,14,19]:

fωAi ¼ 4π
w2

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=wþ 1

p ≃ 4π
w3=2

λ

ffiffiffiffiffi
r0

p
; r0 ≫ w: ð5Þ

Under the same assumption (r0 ≫ w), we can estimate
the autofocus position of the second harmonic autofocusing
term by using its primary ring radius r00 and width w0

parameters as estimated by Eq. (4):

f2ωAi ¼ 4π
w02

λ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00=w

0 þ1

q
≃4π

w3=2

λ

ffiffiffiffiffi
r0

p ¼ fωAi: ð6Þ

Interestingly, this result shows that the autofocusing com-
ponent of the second harmonic will autofocus at the same
position as the fundamental. So, the phase memory in the
second harmonic acts in such a way that its propagation
dynamics are identical to the fundamental. As for the
pedestal term, it does not interfere with this focus, since it
diffracts out.
We can now generalize this analysis for the generation of

ring-Airy harmonics of any higher order. As we demon-
strate in the following, all harmonics exhibit phase memory

and inherit the propagation dynamics of the fundamental.
In more detail, for the case of even orders AiðρÞ2m
ðm ¼ 1; 2;…Þ, Eq. (3) is generalized to [21,22]

AiðρÞ2m ≃ Aia2ðρÞm ¼
Xm
n¼0

2m−nm!

n!ðm − nÞ!EðρÞ
2m−nAiðŜ · ρÞn:

ð7Þ
Furthermore, whenever n¼2l ðl ¼ 0; 1;…Þ, the corre-
sponding power term AiðŜ · ρÞn in Eq. (7) will result in
a sum of “net” ring-Airy terms

P
l−1
i¼−1ð…ÞAiðŜl−i ·ρÞ,

where Ŝq · ρ ≡ αqρ þ βq, αq ≡ 22q=3, and βq ≡
π=ð8 × 21=3Þð1 − 22q=3Þ=ð1 − 22=3Þ. Each of these har-
monic ring-Airy terms will autofocus at positions [21]

fð2mωÞ
AiðqÞ ¼ 4π

w2
q

λð2mωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0q
wq

þ 1

s
≃m21−qfωAi;

q ¼ 1;…; log2mþ 1; ð8Þ

where λð2mωÞ ¼ λ=2m is the 2mth harmonic wavelength,
r0q ¼ r0 þ αqβqw, wq ¼ w=αq, and fωAi refers to the
autofocus position of the fundamental. Interestingly, in
all the even harmonics that are a power of 2 (i.e., second,
fourth, …) there will exist a term that will be autofocusing
at fωAi. On the other hand, for odd orders AiðρÞ2mþ1

ðm ¼ 1; 2;…Þ, Eq. (3) is generalized to

AiðρÞ2mþ1≃Aia2ðρÞmAiðρÞ

¼
Xm
n¼0

2m−nm!

n!ðm−nÞ!EðρÞ
2m−nAiðŜ ·ρÞnAiðρÞ: ð9Þ

Clearly, now there exists only one “net” ring-Airy term (for
n ¼ 0). This harmonic ring-Airy term will be autofocusing
at [21]

fð2mþ1Þω
Ai ¼ 4π

w2

λð2mþ1Þω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
w
þ 1

r
≃ ð2mþ 1ÞfωAi: ð10Þ

Figure 2 shows an overview of these results up to the
40th harmonic. Because of the phase memory, all harmon-
ics exhibit abrupt autofocusing. We can clearly see that
even orders exhibit multiple foci and that when the order is
a power of 2 there exists always a focus at fωAi.
The next challenge in our analysis is related to reaching

higher intensities compared to the ones achievable by
autofocusing. A straightforward way of doing this is by
using focusing optical elements. As we have previously
shown [23], ring-Airy beams can be further focused using a
lens, though they behave in a peculiar way; they exhibit
double foci, a property characteristic to the family of Janus
waves [23] where they belong. The main question here is
how their harmonics will be affected. Although in theFIG. 1. Approximation of the Ai2 function.
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following we are discussing the effect that focusing has on
the second harmonic, our analysis can be easily expanded
to the case of higher harmonics as well. As shown in Fig. 3,
if we assume that a thin lens is located at a distanceΔz from
the focus of the ring-Airy beam, we get for the fundamental
two foci at positions zω1 , z

ω
2 relative to the lens [23]:

zω1 ¼
�

Δ~zω

Δ~zω þ f̃ω

�
f; zω2 ¼

�
Δ~zω − 2

Δ~zω − 2þ f̃ω

�
f; ð11Þ

where f̃ω ≡ f=fωAi and Δ~zω ≡ Δz=fωAi. In the case of the
second harmonic, the situation is more complex. The
second harmonic Airy term will lead to two foci at positions
z2ω1 , z2ω2 , while the smooth pedestal term will focus at
position z2ω3 :

z2ω1 ¼
�

Δ~z2ω

Δ~z2ω þ ~f2ω

�
f ≃ zω1 ;

z2ω2 ¼
�

Δ~z2ω − 2

Δ~z2ω − 2þ ~f2ω

�
f ≃ zω2 ;

z2ω3 ≅ f; ð12Þ

where f̃2ω ≡ f=f2ωAi ≃ f̃ω and Δ~z2ω ≡ Δz=f2ωAi ≃ Δ~z2ω.
Interestingly, even after the focusing, the two foci of the
second harmonic Airy term overlap with those of the
fundamental. So, focusing does not deteriorate its phase
memory inherited propagation dynamics.

Note that our analysis applies also to the harmonics and
powers of 1D and 2D Airy beams, but in this case the
resulting Airy terms in the harmonics do not result in any
distinguishable accelerating features, since their propaga-
tion is shadowed by the propagation of the non-Airy terms
[24–26]. Likewise, the above can be applied in the temporal
domain for Airy pulses [12,27–29].
Experimental part.—We have performed second har-

monic (SH) generation experiments using autofocusing
ring-Airy beams. In our experiments, we studied the
propagation of the fundamental and SH, both in free
propagation and after focusing by a lens. The experimental
setup used for the generation of the SH is shown in Fig. 4.
A Ti:sapphire laser system, delivering Gaussian-shaped
beams at 800 nm, 35 fs at a 50 Hz repetition rate, was used.
The ring-Airy beam was generated using a Fourier trans-
form approach [14] in which the phase of the Gaussian
laser beam was modulated using a spatial light modulator
(SLM, Hamamatsu LCOS-X10468-2). The beam parame-
ters (radius and width) were selected so that the beam
abruptly autofocuses at fωAi ¼ 400 mm from the generation
plane. For generating the second harmonic, the autofocus-
ing beam propagated in a type-I BBO crystal of 200 μm
thickness. The conversion efficiency in this case was
measured to be 7.3%. The fundamental and its second
harmonic were then allowed either to freely propagate or
were focused using a focusing lens f ¼ 100 mm. The
distances between the BBO crystal and that of the focusing
lens from the Fourier plane (FP) were 60 and 146 mm,
respectively. Bandpass interference filters were used to
isolate the fundamental and the second harmonic.
The transverse intensity distribution of the beam along

its propagation was imaged by a linear CCD camera
(14 bit), which was moved along the propagation axis z.
In the first experiments we report below, we studied the

propagation and autofocusing properties of the fundamen-
tal and its second harmonic without the presence of any
focusing lens. Combining 2D transverse ðx; yÞ images that

FIG. 2. Autofocusing positions of ring-Airy harmonics. Note
that even orders exhibit multiple foci (vertical lines are guides to
the eye to identify each harmonic order). Curves that follow the
points are f ¼ 2jfωAi ðj ¼ 0;−1;…Þ; the factors 2j are indicated
on each curve.

FIG. 3. Focusing of a ring-Airy beam by a thin lens. As in the
case of all Janus waves, two foci are observed [23].

(a)

(b)

FIG. 4. Schematic representation of the experimental setup.
The ring-Airy beam is generated at the FP of a lens after being
phase modulated by a SLM. A type I BBO crystal generates the
second harmonic. The fundamental and its second harmonic
either propagate freely and autofocus (a) or are focused by a lens
(b). The transverse profile of the beam is captured by a CCD
camera at different distances along the propagation axis z.
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were captured at various positions along the propagation z
axis, the Iðx; y; zÞ intensity profile of the beam was
retrieved. An x − z cross section of such a profile is shown
in Fig. 5 for the above case. Figure 5(a) reveals the
autofocusing behavior of the fundamental ring-Airy beam,
which focuses at z ¼ 400 mm as expected, followed by the
characteristic ring-Airy focus intensity distribution. As
predicted by our model and shown in Fig. 5(b), the second
harmonic exhibits a parabolic trajectory, autofocusing at the
same focus position as the fundamental. The non-ring-Airy
pedestal term diffracts out and appears as a lower-intensity
halo in the images.
Our analysis is completed through detailed numerical

simulations of the SH generation process and the propa-
gation dynamics of the fundamental and its second har-
monic. Our model is based on two coupled equations for
monochromatic fields of the fundamental and its second
harmonic [5]. In the coupling terms, we assumed perfect
phase matching and the second order susceptibility χð2Þ,
equal to 4 × 10−12 m=V [30]. The corresponding numerical
simulations, shown in Figs. 5(c) and 5(d), are in very good
agreement with the experimental results, while the ana-
lytical predictions of the foci positions nicely agree as well.
Placing a focusing lens after the BBO crystal results in

the peculiar behavior previously discussed. Figures 6(a)
and 6(c) show, respectively, the experimental and simu-
lation results for the fundamental beam, presenting two
discrete conjugate foci distributions. Again, a very nice
agreement is found between the results from our experi-
ments, simulations, and analytical predictions, with the
two foci located at zω1 ¼ 75.3 mm and zω2 ¼ 122.6 mm.
Figures 6(b) and 6(d) show, respectively, the experimental
and simulation results for the second harmonic beam. Once
more, the agreement between the results from our experi-
ments, simulations, and analytical predictions is nice. The
central intense focus results from the pedestal term and is
located at z2ω3 ¼ 92.7 mm, practically at the focal plane of
the lens. The other two foci are positioned before and

after the focal plane of the lens at z2ω1 ¼ 67.4 mm and
z2ω2 ¼ 112.8 mm, respectively. The combination of the
three foci results in an elongated focal volume for the
second harmonic, which, as one can clearly see in Fig. 6,
overlaps to a great extent with the also elongated focal
volume of the fundamental. This extended spatial overlap
of the fundamental and second harmonic is of a pivotal role
in nonlinear wave-mixing experiments, like in the gener-
ation of intense terahertz fields using two-color ring-Airy
beams [8].
Conclusions.—In conclusion, we have demonstrated

theoretically and experimentally that the harmonics of
autofocusing ring-Airy beams preserve the phase of the
fundamental. Through an analytic approximation of the
powers of the Airy function, we have shown that phase
memory during harmonic generation is an inherent prop-
erty of all optical wave packets described by an Airy
distribution. Our findings are thus applicable to accelerat-
ing Airy beams (1D and 2D), cylindrically symmetric ring-
Airy beams but also in the temporal domain for Airy pulses,
and spatiotemporal Airy light bullets. The phase memory in
the case of ring-Airy beams results in abruptly autofocusing
harmonics, with their focus position coinciding with that of
the fundamental for even harmonics of power 2. We have
also demonstrated that even after focusing these beams still
spatially overlap, surprisingly over elongated focal vol-
umes. Our analytical predictions are in excellent agreement
with second harmonic generation experiments and detailed
numerical simulations. Our results open the way for using
accelerating beams and their harmonics in a plethora of
nonlinear optics applications, like for intense terahertz
fields [8,31], nonlinear wave mixing [24], and filamenta-
tion [10,19,32].
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