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The properties of cold Bose gases at unitarity have been extensively investigated in the last few years
both theoretically and experimentally. In this Letter we use a family of interactions tuned to two-body
unitarity and very weak three-body binding to demonstrate the universal properties of both clusters and
matter. We determine the universal properties of finite clusters up to 60 particles and, for the first time,
explicitly demonstrate the saturation of energy and density with particle number and compare with bulk
properties. At saturation in the bulk we determine the energy, density, two- and three-body contacts, and the
condensate fraction. We find that uniform matter is more bound than three-body clusters by nearly 2 orders
of magnitude, the two-body contact is very large in absolute terms, and yet the condensate fraction is also
very large, greater than 90%. Equilibrium properties of these systems may be experimentally accessible
through rapid quenching of weakly interacting boson superfluids.
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Introduction.—Strongly interacting fermionic cold
atoms have been the subject of a great deal of study both
theoretically and experimentally across the BEC to BCS
transition, and especially at unitarity, where the two-body
system has a nearly zero-energy bound state [1]. These
systems are universal in that all properties, including
ground-state energy, superfluid pairing gaps, superfluid
transition temperatures, etc., are obtained as a set of
universal dimensionless parameters multiplied by the
Fermi energy or momentum of a free Fermi gas at the same
density. Studies of bosonic superfluids, however, have
concentrated on the weakly interacting regime described
by the Gross-Pitaevski mean-field equation. These systems
are comparatively simple to study as they were the first to be
cooled to very low temperatures and their properties can be
described in a mean-field picture.

It has been known for some time that short-range two-
and three-body interactions can be used to describe the low-
energy properties of small clusters of bosons. To obtain
universal properties, the two-body interaction can similarly
be taken to generate a zero-energy dimer, but a three-body
interaction is required [2,3] to avoid the so-called “Thomas
collapse” [4] of three or more particles. The resulting
discrete scale invariance leads to geometric towers of states
in systems with three [5] and more [6—10] bosons. Many
atomic and nuclear few-body systems fall into this univer-
sality class [11].

In this Letter we demonstrate that large clusters and bulk
matter are stable with such interactions, and similarly to
the fermionic case described by a fairly simple set of
universal parameters. We provide the first estimates for
the universal parameters describing the ground-state energy,
the equilibrium density, two- and three-body contacts, and
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the condensate fraction of such a system. Our calculations
are the analog of those carried out for fermions in
Refs. [12,13], but here the universal parameters are directly
related to the properties of the three-body system, i.e., its
energy and radius. These bosonic universal properties may
be accessible through cold-atom experiments, including
those studying rapid quenching from weakly interacting
Bose condensates.

Interaction and  method.—The
consider is

h2
H = —%ZV% + Zvij + Z Viiks (1)

i<j i<j<k

Hamiltonian we

where the first term is the nonrelativistic kinetic energy, the
second the attractive short-range interaction tuned to
infinite scattering length, and the last term is a repulsive
three-body contact interaction tuned to produce a weakly
bound trimer. For zero-range interactions universality has
been demonstrated in Ref. [14]. For this study we employ
finite-range two- and three-body interactions, keeping the
range of these interactions much smaller than the size of the
weakly bound trimer. For unitarity bosons this restriction is
very stringent, as we shall see. The interaction must also be
much shorter ranged than the average interparticle spacing
in the bulk, which is an order of magnitude smaller than the
three-body cluster size.

Here we employ Gaussian two- and three-body inter-
actions:

hZ
Vii=V3 Eﬂ% exp[—(u2rj)?/2], (2)
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where r;; = r; — r; is the relative distance between bosons
and j, and R;y = (r}; + rf, 4+ r3)"/?. The strength V9 is
tuned to unitarity, and V9 is tuned to reproduce a weakly
bound three-particle state with a binding energy —E5 and an
associated radius Ry = (—2mE;/h>)~"/2. The introduction
of both two- and three-body range parameters y, 5 allows us
to produce arbitrarily weakly bound trimers for a given set
of interaction ranges, which is essential to extract universal
physics in the deeply bound many-body system.

Specific details of the interaction are not relevant as long
as they are very short-ranged and the ground state can be
tuned to a shallow trimer. In any physical system, the
geometric tower of Efimov states at unitarity is truncated
from below due to the range of the interaction. The binding
energy of the would-be next deeper trimer is =(22.7)?
larger than that of the calculated ground-state trimer; hence,
the shape of our potentials should produce small effects for
,142,31_?3 > 23 [2,3]. Corrections due to the physical inter-
action range can be included through a two-body potential
with two derivatives [14].

We use variational and diffusion Monte Carlo (VMC,
DMC) methods for the solution of the Schrodinger equa-
tion. The trial-state wave functions are of the form

Yr = Hf(l)(ri)Hf(z)(rij) IR, @

i<j i<j<k

with f1)(r)=exp(—ar?), f®(r)=Ktanh(u,r)cosh(yr)/r,
and f®)(R) = exp{ug exp[-R?/(2r})]}. The parameters K
and y are chosen to have f(*)(d) = 1 and ' (d) = 0 at the
“healing distance” d. The variational parameters a, y;, d,
ug, and ry are optimized at the VMC level for each system
and interaction as described in Ref. [15], and a =0 to
simulate uniform matter. The VMC wave function is then
used as input for exact DMC calculations; see, for example,
Ref. [16]. The calculated energies are exact subject to
statistical and time-step errors that can be made arbitrarily
small. Results for the energy are independent of the trial
wave function, though statistical errors may be large for
poor choices. Other properties are extrapolated from the
VMC and DMC results, which we have tested using
different trial wave functions. The extrapolation errors
are very small, on the order of a few percent or less,
similar or smaller than the reported statistical errors.
Clusters.—Clusters with six or fewer bosons have been
studied extensively in the literature with an emphasis on
Efimov physics [5-10], for a review see Ref. [17]. Slightly
larger clusters with similar interactions have also been
considered previously [18-21]. Universal behavior was
found for small clusters up to N < 15. Nonuniversal
behavior beyond this point was attributed to finite-range

effects. For sufficiently small range, it is expected that
clusters will be universal and have a binding energy per
particle,

Ey Ey
N = &p(N) 3

where £z (N) is a universal function of N.

In Fig. 1 we show results for clusters of up to 60 bosons
for Hamiltonians with u,R; = 46 and 65, and compare to
those of Ref. [18] for N < 15. These yield a trimer rms
radius (r3)!/2 ~ 0.61R; for our finite-range Hamiltonians.
We consider three-body interactions with different ratios of
two- to three-body interactions ranges, X, = u3/p, = 0.5,
0.75, and 1.0. Finite-range interactions will show nonuni-
versal effects when the range of two- or three-particle
interactions becomes significant compared to the average
interparticle distance. This can be seen in the results of
Refs. [18,21] around N = 15, and also in our results
corresponding to the more bound trimers (open symbols
with y, Ry = 46 in Fig. 1) for smaller X ,. For u,R; = 65 the
three sets of points with X, = 0.5, 0.75, 1.0 agree within
statistical errors. For N = 4 ourresult [3E4/(4E;) = 3.5(1)
for u, Ry = 65 and X , = 1.0] also agrees very well with the
precise calculation of Ref. [8] [3E,/(4E3) = 3.46], sug-
gesting that Efimov-related few-body physics is properly
captured by our potential.

Studies of unitary bosons commonly employ a zero-
range two-body interaction with three-body hard-core
interaction of radius R. That interaction has a fixed value
of Ry/Ry~15.3 [23], which can be compared to our
paRy = 65 and p3R; =32, 49, 65 for X, = 0.5, 0.75,
1.0. The zero-range two-body plus hard-core interaction
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FIG. 1. Energy per particle of N-boson clusters scaled to the
trimer energy per particle. Filled symbols are more loosely bound
(1, R = 65) and exhibit universal behavior (the results are also
available in Ref. [22]); open symbols have larger two-body
interaction range (u, R = 46). Different colors indicate the ratio
of two- to three-body interactions ranges, X, = p3/u, = 0.5
(red), 0.75 (green), and 1.0 (blue). Results from Ref. [18] are
indicated as (black) triangles. The solid (blue) line corresponds to
a liquid-drop fit.
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FIG. 2. Rms radii of N-boson clusters (upper panel) and radial
one-body density of various clusters (lower panel), in units given
by the three-boson distance scale R;. Symbols in the upper panel
are the same as for Fig. 1. In the lower panel, the curves with
N = 10 (black), 20 (red), 40 (green) and 60 (blue) bosons are for
ﬂ2R3 = 65 and X” =1.

can reproduce universal physics for small clusters but the
three-body hard core is not small compared to typical near-
neighbor separations for larger clusters (N > 15) or matter,
as discussed below.

For small N the binding energy per particle increases
approximately linearly with N, and by N > 7 it is an order
of magnitude larger than the trimer’s. Since we have tuned
the trimer energy to be very small we can find universal
behavior up to N = 60 clusters, as shown by the solid
points (i, Ry = 65) in Fig. 1. For a 60-particle cluster the
binding per particle is approximately 50 times that of the
trimer. Naive dimensional arguments would suggest that
the repulsive three-body interaction will become more
important for large N, resulting in saturation to a constant
binding energy per particle similar to what is observed in
atomic nuclei. The energies per particle for large clusters
are beginning to saturate to a constant value as shown in
Fig. 1. Similar behavior has been seen in finite-temperature
simulations in a trap [24,25].

We have also calculated the single-particle densities and
radii of the N-particle clusters. Radii are also expected to
scale with a universal ratio of the trimer rms radius:
(r2)V? = B(N)(r2)"/2. Results are shown in Fig. 2. The
upper panel shows that the cluster radius reaches a
minimum around N = 5 — 7, and then increases as satu-
ration sets in. For larger clusters one would expect the
radius to increase as N'/3 for a system saturating to an
equilibrium density. The lower panel shows single-particle
densities for different particle numbers N and demonstrates
the saturation of the single-particle density near the center
of the clusters at a value independent of cluster size.

Matter—We have also computed the properties of the
bulk Bose liquid at unitarity for these same interactions
using periodic boundary conditions. We expected very
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FIG. 3. Zero-temperature equation of state vs density for the

unitary Bose fluid. Symbols as in Fig. 1. The two curves show
quadratic fits around saturation density for X, = us/u, = 0.5
(red) and 1.0 (blue).

small finite-size effects, and confirmed this by comparing
results for 20, 40, and 60 particles. Results for different N at
the same density are equivalent within statistical errors. We
find a universal equation of state (EOS) with an equilibrium
ground-state energy per particle of 87 4= 5 times that of the
trimer, and a saturation density of py4zR3/3 = 275 + 20.
The results are summarized in Fig. 3. Near saturation
density they are well described by

= &3(N - ) [—1 - K<p_—p°>2}, (6)

Po

3Ey(p)
N|E5|

N—-oco

with the dimensionless compressibility « = 0.42(5). The
curves in Fig. 3 are fits to the EOS calculations with two
different X ,.

The calculations of the liquid are consistent with those
obtained by extrapolating the cluster results. A liquid-drop
extrapolation of the cluster binding energies, Ey/N =
Eg(N — oo)(1 +nN~'/3 4 ...), is consistent with the ener-
gies found for the bulk. Fitting results for N > 30, we find
that the universal energy parameter £z (N — o0) = 90 £ 10.
The surface energy scaled by the volume energy Ez(N —
o) is n = —1.7 4+ 0.3, but has relatively large statistical
errors. Similarly, the single-particle density near the center of
the drops shown in Fig. 2 is consistent with the equilibrium
density of matter. Despite the growth in energy with N, the
liquid can be considered universal: the interparticle separa-
tion at equilibrium, [3/(47p,)]'/? = R5/6.4, is almost 4
times larger than the distance scale set by the next deeper
Efimov trimer in the universal system without cutoffs. It is
also 5-10 times larger than the two- and three-body inter-
action ranges, in contrast to ~2 for a zero-range two-body
plus three-body hard-core interaction at the same density.

It is interesting to compare these results to liquid “He,
which has a large two-body scattering length and, for
small N, weakly bound clusters that can be described by
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short-range interactions. Per particle, the binding energy of
liquid “He is —7.14 K [26], which is about 180 times that of
the “He trimer, —0.0391 K [27]. The scaled surface energy
is & — 2.7 [27] and the dimensionless compressibility is
~1.9 [26]. For small N the helium clusters are universal
[28], but for large N the interaction range is comparable to
the interparticle separation and hence not universal.
Nevertheless, the ratio of binding energies £z(N — o)
and the scaled surface energy x are within a factor of 2 of
unitary bosons.

We have also examined the two- and three-body contact
parameters C, 5 for the unitary Bose fluid at equilibrium
density. These contact parameters impact various properties
of the system, and relate the short-distance behavior to the
high-momentum tail of the momentum distribution, see, for
example, Refs. [29-33]. The two- and three-body distri-
bution functions are shown in Fig. 4, normalized to one at
large distances (differing by a factor of pN! from the gy
defined in Refs. [31,32]).

In the universal regime outside the range of the inter-
action, the two-body distribution g,(r), with r=r;;, is
expected to be proportional to 1/7%. The upper lines in the
top panel show 3272p*3r2g,(r)/10 for the different
simulations, and the dashed line is a quadratic fit to results
in the universal regime that can be extrapolated to r = 0 to
give the dimensionless two-body contact a,, with C, =
Nayp*/? [29]. From the extrapolation of r’g, we find
a, = 17(3). More accurate results may be achievable
through simulations at different scattering lengths with
fixed E5. This result is larger but qualitatively comparable
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FIG. 4. Two- (upper panel) and three- (lower panel) body
distributions in the unitary Bose fluid at saturation density, both
normalized to unity at large separations. Symbols indicate
simulations with different two- and three-body ranges, as in
previous figures. For the two-body distributions in the upper
panel, multiplying by r? allows an extrapolation (dashed line) to
r = 0 to obtain the contact. In the lower panel, the three-body
contact (dashed line) can also be extrapolated from the universal
regime (dashed line) to r = 0.

to those obtained in more approximate approaches [34] or
those obtained with zero-range two-body plus hard-core
three-body interactions [35,36], and quite similar to those
extracted through rapid experimental quenches [29,30].

Similarly, in the bottom figure the dashed line is a fit to
g3(r), with r = R; ;.. In the universal regime, extrapolating
to r = 0 gives the three-body contact. It is more accurate to
extract the dimensionless three-body contact 35, with C; =
Np3p?/3 [29], from the derivative of the energy with respect
to R; at constant scattering length. Using the equilibrium
properties calculated in Fig. 3 we obtain 3 = 0.9(1). The
density dependence of f; around equilibrium can be
extracted from Eq. (6). Further simulations could yield
the density dependence of a,, and also the asymptotic
behavior of the momentum distribution gs.

With these strong correlations and the large binding and
small radii relative to the trimer, one might expect that the
condensate fraction may be reduced in the bulk. In fact we
find quite a large condensate fraction at equilibrium
density, with n(k =0) =0.93(1), compared to a value
of unity for a weakly interacting Bose gas. One can also
compare to liquid “He which has a condensate fraction of
0.0725(75) at equilibrium density [37].

The large condensate fraction implies that it is reason-
able to access equilibrium properties of the universal Bose
fluid as a function of density through experiments with
rapid quenching of a weakly interacting gas [38,39]. The
universal properties of the unitary Bose fluid are difficult to
measure using standard techniques because of losses to
deeply-bound three-body states that occur in cold atoms but
are absent in our simulations. These loss mechanisms can
lead to a trap lifetime smaller than that needed to reach full
equilibrium, and presently available studies investigate this
dynamics of the rapid quenching of the free-to-unitary
transition. Our results indicate that a rapid quench from a
weakly interacting Bose gas at the appropriate density may
enable one to obtain the equilibrium properties. The
relatively large overlap of the two states should lead to a
rapid ejection of particles through high-energy two- and
three-body processes, leading to a rapid cooling of the
system. Quantifying this energy loss could lead to an
experimental verification of the universal properties of the
unitary Bose fluid in thermal equilibrium.

Summary.—We have demonstrated the universal nature
of bosons at unitarity using short-range interactions tuned
to unitarity in the two-body system and weak binding
(Efimov) trimers in the three-body system. We have
determined many of the universal properties of the unitary
Bose fluid, including the energies and radii of clusters of up
to 60 bosons and calculated the universal saturation and
contacts of the unitary Bose fluid. We find a ground-state
energy per particle of approximately 90 times that of the
trimer at an associated high density. We find a large two-
body contact parameter, yet the condensate fraction in the
bulk is greater than 90%. We also calculate the three-body
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contact parameter for the first time. Further experimental
and theoretical studies of the unitary Bose fluid will be very
intriguing. Many new properties can be studied, including
those described above, collective effects and the static and
dynamic response of the system.
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